KETJENFINE® 907 (KF 907)
A high-activity Type I catalytic solution for VGO hydrotreating

Ketjenfine® 907 (KF 907) — A high-activity, high-stability catalyst solution for VGO hydrotreating

KF 907 is a new addition to Albemarle’s Fluid Catalytic Cracking pretreat (FCC-PT) catalyst portfolio. It is applicable as both a standalone catalyst and as a key component in various STAX® configurations, utilizing Albemarle’s proprietary reactor-loading technology.

KF 907 is a Type I NiCoMo catalyst that was specifically designed to achieve high HDS activity with very high stability throughout the entire operating cycle — even in the most demanding conditions.

Higher-activity catalyst solutions help refiners overcome constraints and exploit opportunities. Thus, KF 907 can help refiners meet the challenges imposed by implementation of the new Tier 3 gasoline regulations. It can also help refiners overcome constraints related to unit start-up limitations.

VGO STAX® FCC-PT Solutions

FCC-PT operations typically only have two reaction zones that vary in length and position during the operating cycle.

Catalyst application strategy must account for reaction Zone 1 growth and Zone 2 shrinkage throughout the cycle, as well as feed properties, operating conditions and objectives, and unit constraints.

NiCoMo catalysts, with their balance of HDS/HDN activities, are well-suited for use in zones 1 and 2 of low- to medium-pressure units and for Zone 1 of high-pressure units that are challenged to achieve Tier 3 gasoline sulfur and cycle length targets. The high activity and stability of KF 907 helps refiners achieve these goals at competitive fill costs.

Superior Performance, Higher Profitability

KF 907 gives value to refiners at all ppH₂ levels

FCC-PT catalysts for any refining objective

Albemarle’s portfolio for FCC pretreatment includes many different catalysts (each available in two different sizes), providing a solution for any refining objective in terms of activity, stability, hydrogen consumption and pressure drop.

These catalysts can be deployed in many different ways according to Albemarle’s proprietary VGO STAX® FCC-PT technology to generate tailored solutions for specific customer requirements.

Table 1: VGO STAX® FCC-PT system design for robust operations

<table>
<thead>
<tr>
<th>H₂ partial pressure</th>
<th>Zone 1 (30-60 Vol%)</th>
<th>Zone 2 (40-70 Vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ partial pressure</td>
<td>Higher</td>
<td>Lower</td>
</tr>
<tr>
<td>Main HDS reaction</td>
<td>Direct H₂S</td>
<td>Direct + hydrogen Organinc nitrogen</td>
</tr>
<tr>
<td>Main HDS reaction</td>
<td>Hydrogenation Org. nitrogen, aromatics</td>
<td>Hydrogenation Org. nitrogen, aromatics</td>
</tr>
<tr>
<td>Main HDN/HDA reaction</td>
<td>Fast Very Slow</td>
<td>Slow Slow</td>
</tr>
<tr>
<td>Preferred catalyst types (general guidance may vary for specific cases)</td>
<td>CoMo (Low-Med P) (Ni)CoMo (Med P) NiMo (High P)</td>
<td>CoMo (<55 bar ppH₂) (Ni)CoMo (Med ppH₂) NiMo (>90 bar ppH₂)</td>
</tr>
</tbody>
</table>

Figure 2: Albemarle’s FCC-PT catalyst portfolio
Ketjenfine® 907 — A commercially-proven FCC-PT performer

KF 907 is a strong performer in pilot plant tests and commercial unit applications operating across the operations spectrum from low-to-moderate and high-pressure FCC-PT applications. The HDS and HDN RVA benefits of KF 907 are high in reaction Zone 1, and they increase further as HDS and HDN severity increases in Zone 2. Thus, for low and moderate-pressure applications, KF 907 can often be used as a standalone catalyst solution. For high-pressure applications where deep HDS and deep HDN/HDA are the objectives, KF 907 can be applied in Albemarle’s proprietary VGO STAX® configurations.

Ketjenfine® 907 shows up to 20% HDS RVA benefit in low-to-medium-pressure FCC-PT applications

Example shown is a pilot plant test at 870 psi ppH₂, 680°F and varying LHSV with VGO feed containing 2.0 wt% S, 1600 wppm N and 21.4 API gravity.

KF 907 has been successfully applied in six commercial FCC-PT cycles, including two units operating at >1200 psi ppH₂, in the U.S. The example highlighted below compares KF 907 performance in the current cycle vs. the previous successful cycle with KF 905 STARS® (KF 905).

This unit treats a nominally 50 kBD feed that is a blend of HVGO + HCGO. As shown in the charts, API gravity, Sulfur content and HCGO content are all worse for the current cycle, while product S is lower and density uplift is higher. Deactivation rate for the KF 905 was 1.1 ºF/mo, and deactivation rate for the KF 907 is in the range 0.6-1.0 ºF/mo.

KF 907 actual WABT (Cycle 2016) versus KF 905 predicted WABT from 2014 cycle

FOR MORE INFORMATION ON THIS OR OTHER ALBEMARLE PRODUCTS AND TECHNOLOGIES, PLEASE CONTACT YOUR ALBEMARLE REPRESENTATIVE.

AMERICAS: 13100 Space Center Blvd • Houston, TX 77059 • USA • Tel: +1 281 480 4747 • Email: catmaster@albemarle.com
EUROPE AND AFRICA: Nieuwendammerkade 1–3 • 1030 BE Amsterdam • The Netherlands • Tel: +31 20 634 7300 • Email: catmaster@albemarle.com
MIDDLE EAST AND INDIA: PO Box 293774 • 6W Block A, Office 512 • Dubai Airport Free Zone • Dubai • Tel: +971 4 701 7770 • Email: catmaster@albemarle.com
ASIA PACIFIC: Room 2208, Shui On Plaza • No. 333 Huai Hai Zhong Rd • Shanghai 200021 • China • Tel: +86 21 6103 8666 • Email: catmaster@albemarle.com

ABOUT ALBEMARLE

The information presented herein is believed to be accurate and reliable, but is presented without guarantee or responsibility on the part of Albemarle Corporation. It is the responsibility of the user to comply with all applicable laws and regulations and to provide for a safe workplace. The user should consider any information contained herein, including information about any health or safety hazards, only as a guide, and should take those precautions that are necessary or prudent to instruct employees and to develop work practice procedures in order to promote a safe work environment. Further, nothing contained herein shall be taken as an inducement or recommendation to manufacture or use any of the herein described materials or processes in violation of existing or future patents.

© 2017 Albemarle Corporation. All rights reserved worldwide 03-17