

113 Edinburgh South Drive Suite 120 Cary, North Carolina 27511 Tel 919.292.2200 www.swca.com

Sound Science. Creative Solutions.®

June 26, 2024

Melinda Wolanin
North Carolina Department of Environmental Quality
Division of Air Quality
610 East Center Avenue
Suite 301
Mooresville, NC 28115

Re: North Carolina Non-Title V Air Permit Application for Albemarle U.S., Inc. proposed Kings Mountain Lithium Mine Project in Kings Mountain, North Carolina.

Ms. Wolanin,

In accordance with the minor source permitting requirements of 15A North Carolina Administrative Code (NCAC) 02Q, Albemarle U.S., Inc. (Albemarle) is submitting a Non-Title V air permit application to recommission an existing spodumene ore mine and to construct and operate a new spodumene Concentrator Plant to process the extracted ore at its Kings Mountain facility in Kings Mountain, Cleveland County, NC.

All applicable NCDEQ DAQ forms and an application checklist can be found in Attachment A of this application, including the forms A1, A2-A3, all applicable B and C source forms, D1, D4, and D5.

As required for Non-Title V air permit applications, two copies are being submitted to the NCDEQ Mooresville Regional Office. The small source new permit fee of \$50 will be submitted via the NCDEQ Air Quality Application ePayments website. Please contact Kathryn Gardner, with the application ID needed for permit payment online, at Kathryn.gardner@swca.com.

Please feel free to contact me at (479) 651-6837 with any questions regarding this submittal.

Sincerely,

Seth Gately
Air Quality Project Specialist
SWCA Environmental Consultants

2/26

North Carolina Non-Title V Air Permit Application

Kings Mountain Lithium Mine Project

June 26, 2024

Document No.: KM60-EN-RP-9091

Revision: 0

Revision Record

Revision	Date	Description

Approval Record

	Name	Title	Signature	Date
[Insert Consultancy Name] Prepared By:				Month Day, Year
[Insert Consultancy Name] Approved By:				
Albemarle Approved By:				

Disclaimer

This document is a working document. This document may change over time because of new information, or further analysis, or deliberation.

© Albemarle Corporation. All rights reserved. | Printed copies should be used with caution. The user of this document must ensure the current approved version of this document is being used.

Doc No.: KM60-EN-RP-9091

1.	Introducti	on1
2.	Facility O	verview2
3.	Process D	Description6
4.	Potential-	to-Emit Emission Calculations11
5.	Air Quality	y Regulatory Review15
Ар	pendix A Construct	NCDEQ Division of Air Quality – Application for Air Permit to /Operate Forms
Аp	pendix B	Emission Calculations
Аp	pendix C	Equipment Specifications
Аp	pendix D	NC DAQ Permit Applicability Determination Letter
Ар	pendix E	NC DAQ Zoning Consistency Determination
Lis	st of Table	es s
Tal	ble 2: Ore C	ce PTE for Criteria Pollutants and HAPs (tons per year)
Tal Tal	ble 4: New ble 5: Natio	
		Applicability Determination
Li	st of Figu	res
Fig Fig Fig	jure 2. Exte jure 3. Site jure 4. Proc jure 5. Emis	eral Area Map 3 nded General Area Map Including Archdale 4 Map 5 ess Flow Diagram 8 ssion Source Location Map #1 9 ssion Source Location Map #2 10

1. INTRODUCTION

- 2 In accordance with the minor source permitting requirements of 15A North Carolina
- 3 Administrative Code (NCAC) 02Q, Albemarle U.S., Inc. (Albemarle) is submitting a Non-Title V
- 4 air permit application to recommission and construct a new spodumene Concentrator to process
- 5 the extracted spodumene ore at its Kings Mountain facility in Cleveland County, North Carolina.
- 6 Spodumene is a lithium aluminum silicate mineral and is found in pegmatite deposits at the
- 7 mine. The mining operation would separate the spodumene ore from the overburden (i.e., a
- 8 rocky/soil waste material), with the spodumene ore providing feedstock for the newly
- 9 constructed Concentrator. The Concentrator would then produce concentrated ore known as
- 10 "spodumene concentrate" by mechanical separation processes, including flotation.
- 11 A brief overview of the Project location and associated maps are presented in Section 2. A
- 12 process description describing both the process and the associated emission sources is
- presented in Section 3. A discussion of the methods used to calculate emissions from the
- 14 process equipment is included in Section 4, and a regulatory analysis discussing the
- applicability of both federal and state regulations is presented in Section 5.
- All required NC DEQ forms for Non-Title V air permit applications are attached as Appendix A
- 17 along with the air permit application checklist. The B and C forms are grouped by source
- number. These forms are presented in the order of the process flow and in the order that they
- appear in the emission calculations. Emissions of PM, PM₁₀, and PM_{2.5} presented in each
- 20 emission source Form B represent the fugitive emissions from each emission source, i.e.,
- emissions not captured and routed to the control device. All controlled PM, PM₁₀, and PM_{2.5}
- 22 emissions captured or exhausted into the atmosphere by each baghouse are presented in Form
- 23 C1.
- 24 Emission calculations are provided in Appendix B. Equipment specifications for the DMS Dryer
- 25 (ES-039d), equipment specifications for the dust collection baghouses (CD-016, CD-018, CD-
- 26 020, CD-021, CD-022, CD-023, CD-039, CD-040, and CD-043), and Safety Data Sheets
- 27 (SDSs) for the reagents used in the Concentrator are provided in Appendix C. The specification
- 28 sheets for the baghouses are marked-up working documents showing the latest designs from
- 29 the vendor. Final baghouse specification sheets can be provided after equipment selection is
- 30 confirmed.
- 31 As noted in the North Carolina Department of Air Quality (NC DAQ) Permit Applicability
- 32 Determination letter dated February 9, 2023, attached as Appendix D, the existing Processing
- 33 Plant at the Kings Mountain facility is incapable of processing the spodumene concentrate that
- will be produced by the proposed Concentrator. The output from the proposed mine and
- 35 Concentrator would be a mineral product. The existing Processing Plant is a chemical plant
- 36 using chemical raw materials rather than mineral raw materials, and it lacks the equipment
- 37 necessary to process mineral products from the mine/Concentrator. Although under "common
- 38 control" and on "contiguous or adjacent property" as the existing Processing Plant, the proposed

- 39 mine/Concentrator would be a separate stationary source under Prevention of Significant
- Deterioration (PSD) criteria, because the proposed project and the existing facility would
- operate under different Standard Industrial Classification (SIC) codes, and neither would serve
- as a support facility for the other.
- Since the mine/Concentrator is not considered one of the 28 listed source categories, and as a
- 44 separate stationary source, the mine/Concentrator will be a PSD minor source with Potential to
- Emit (PTE) less than 250 tons per year (tpy) of any regulated pollutant. Additionally, since the
- source is not a listed source category, fugitive emissions do not need to be included for the
- 47 purposes of determining whether the mine/Concentrator is a "major source" subject to PSD per
- 48 40 CFR 51.166(b)(1)(iii), which is incorporated by reference in 15A NCAC 2D.0530(b).
- 49 A Zoning Consistency Determination is provided in Appendix E.

2. FACILITY OVERVIEW

- 51 The project site is located in Kings Mountain off Interstate Highway 85, approximately 30 miles
- west of Charlotte, North Carolina and approximately 4 miles north of the North Carolina/South
- 53 Carolina state line in Cleveland County, North Carolina. The pre-existing Kings Mountain
- Lithium Mine has been inactive since the 1980s. Land use surrounding the project area is
- 55 generally made up of industrial and commercial businesses intermixed with residential areas
- and forested rolling terrain. According to the United States Census Bureau 2020 census data,
- 57 Cleveland County has a population of 99,519 (U.S. Census Bureau 2022).
- 58 Proposed point sources include dust collectors associated with rock crushing, conveying, and
- 59 screening and combustion sources to support the mine and concentrator operations. Fugitive
- 60 emissions sources associated with the Project include unpaved haul roads, mining activities,
- 61 storage piles (if material contains silt and is not water saturated), and material handling. Mobile
- fugitive emission sources are not included as part of this application.
- 63 A general area map showing the Kings Mountain tract is provided as Figure 1. A general area
- 64 map showing the relative location of the Archdale tract with respect to the Kings Mountain tract
- is provided as Figure 2. A map of the Kings Mountain tract is provided as Figure 3.

Figure 1. General Area Map

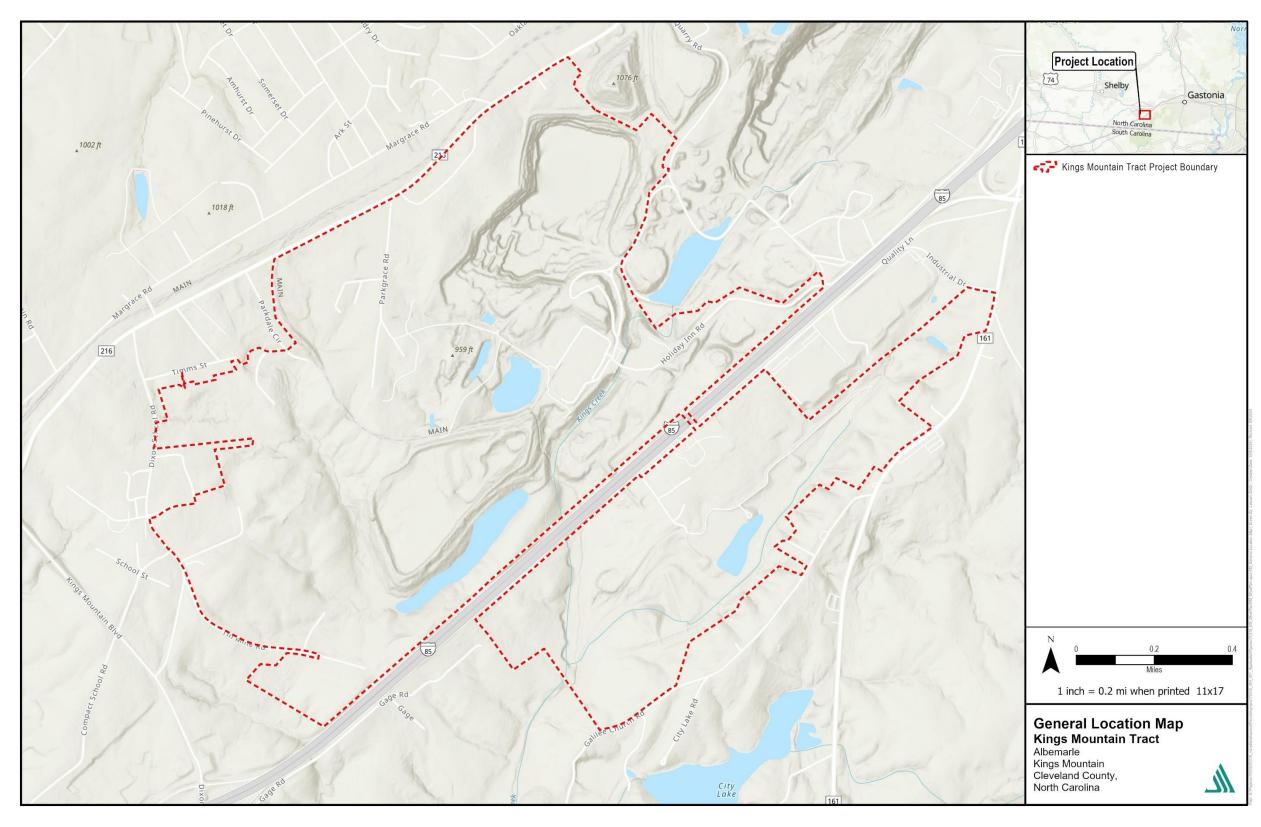
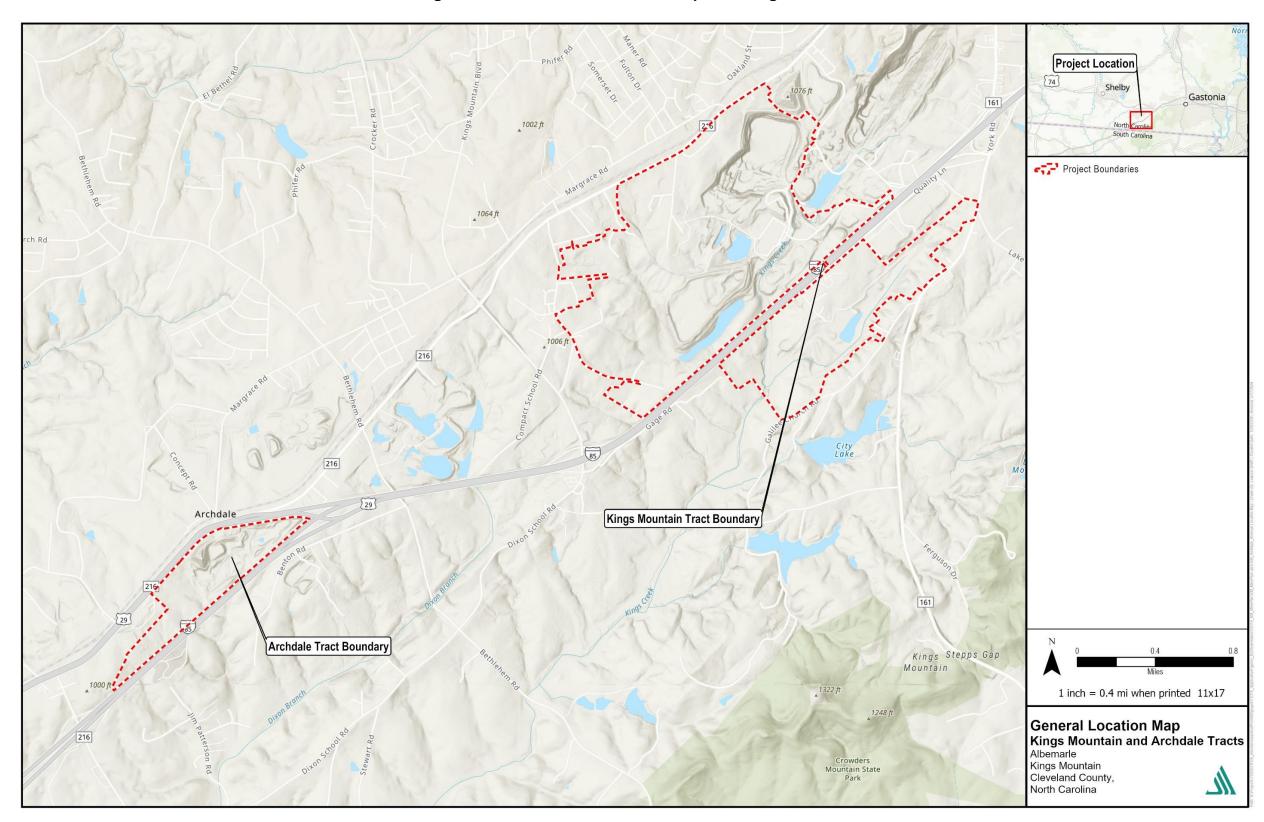
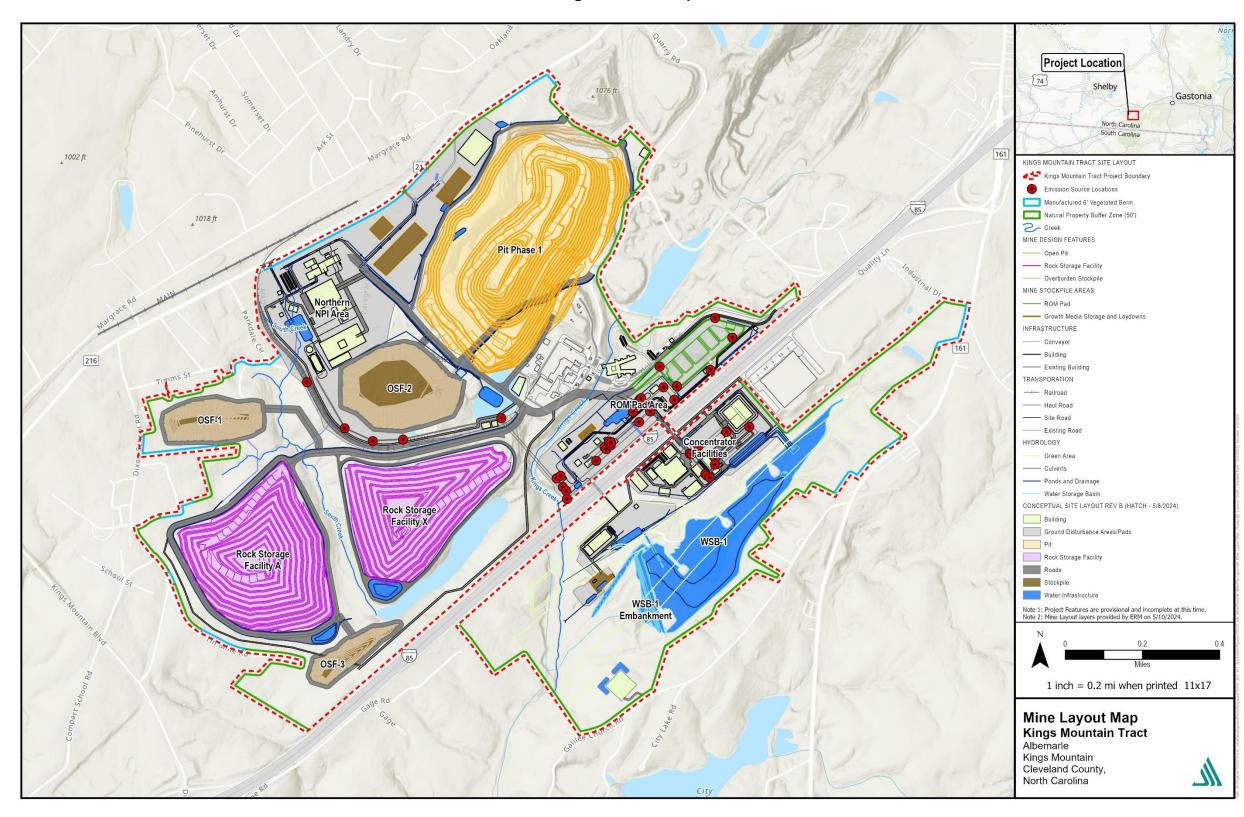
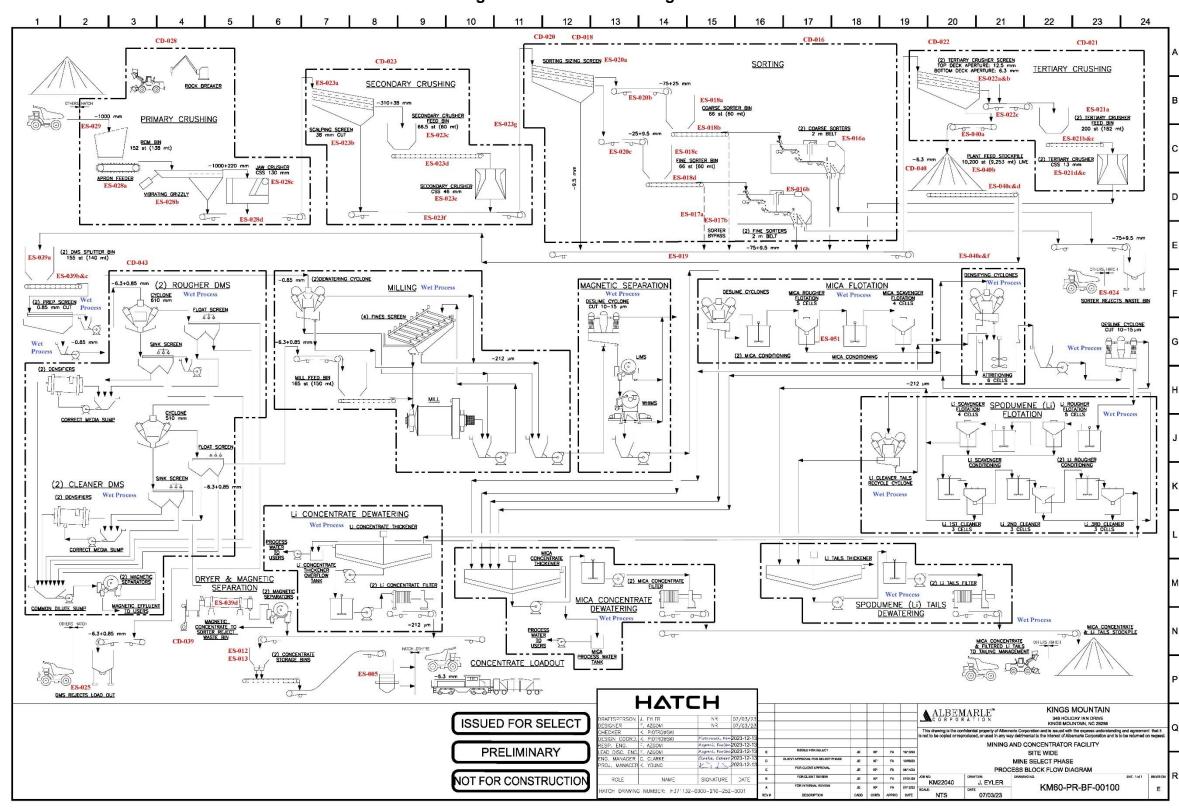




Figure 2. Extended General Area Map Including Archdale

70 Figure 3. Site Map



3. PROCESS DESCRIPTION

- Ore is removed from the mine to be processed through circuits for primary crushing, secondary
- crushing, ore sorting, and tertiary crushing to reduce the size of the material sufficiently before
- 55 being saturated with water and fed into the wet processes in the Concentrator. The
- concentrated spodumene product then undergoes magnetic separation to remove magnetized
- 77 material for disposal while the remaining material is sent off-site via truck and rail.
- 78 The process begins with blasting in the mine pit, which will produce ore and waste rock. Waste
- 79 rock will be transported by truck to on and off-site storage areas. If necessary, rock breaking will
- occur to reduce the size of the ore to allow it to be transported by truck.
- Ore will be sent by truck to the ROM Pad (ES-029), which serves as feedstock management to
- 82 the remainder of the process. Waste rock (containing no ore) will be placed in onsite storage
- 83 piles or sold to offsite aggregate producers.
- Ore from the ROM pad is discharged by truck to the Apron Feeder Conveyor (ES-028a) which
- 85 feeds the Vibrating Grizzly Screen (ES-028b). The ore is then transferred into the Primary
- 86 Crusher (ES-028c) before being discharged to a sacrificial product conveyor (ES-028d). Dust is
- 87 collected at strategic locations around the primary crushing station. The dust is then filtered from
- 88 the air by the Primary Crusher Baghouse (CD-028) which is periodically discharged onto the
- 89 crusher product conveyor.
- 90 After being initially reduced in size by a primary crusher system, the plant feed is conveyed (ES-
- 91 023a, ES-026, and ES-027) to a single deck inclined scalping screen (ES-023b) which
- 92 separates coarse material and discharges it into the Secondary Crusher Feed Bin (ES-023c) to
- 93 be fed via the Secondary Crusher Belt Feeder (ES-023d) for further size reduction in the
- 94 Secondary Cone Crusher (ES-023e) to prepare it for ore sorting by the Sorting Sizing Screen
- 95 (ES-020a), with the undersize being recombined with the crusher product downstream. The
- 96 Secondary Crusher Baghouse (CD-023) removes dust at strategic locations within the
- 97 secondary crushing circuit before being returned to the downstream conveyor belt system (ES-
- 98 023f and ES-023g).
- 99 Material sorted by the Sorting Sizing Screen (ES-020a) is conveyed by the Coarse Sorting
- 100 Conveyor (ES-020b) and the Fine Sorting Conveyor (ES-020c) to the Coarse and Fine Sorter
- Feed Bins (ES-016a and ES-016c). The Sorting Sizing Screen Baghouse (CD-020) removes
- dust at strategic locations within the sorting sizing screen circuit before being returned to the
- downstream conveyor belt system.
- 104 The ore sized by the Sorting Sizing Screen is conveyed separately to the Coarse Sorter Feed
- Bin (ES-018a) and the Fine Sorter Feed Bin (ES-018c). The material is then withdrawn at a
- controlled rate via belt feeders (ES-018b and ES-018d) and discharged into the Coarse/Fine
- 107 Sorting Machines (ES-016a and ES-016b) where additional separation of ore from waste rock
- occurs. Optionally, the Sorter Bypass Conveyors (ES-017a/b) can be used to transfer material
- directly to the tertiary crushing circuit. The sorting machines reject waste material, discharging it

- onto a common sorted waste conveyor (ES-030) to be collected in the Sorter Rejects Bin (ES-
- 111 024), while the ore is collected on a common conveyor (ES-019) for downstream tertiary sizing
- and crushing. Baghouses (CD-016, CD-018, and CD-020) remove dust at strategic locations
- within the sorting machine circuit. The dust is then filtered before being returned to the Tertiary
- 114 Crushing Feed Conveyor (ES-019). The Tertiary Crushing Feed Conveyor transfers material to
- the Tertiary Crusher Sizing Screens (ES-022a and ES-022b). Ore is then conveyed (ES-022c)
- to the Tertiary Crusher Feed Bin (ES-021a). It is then withdrawn at a controlled rate via one of
- two belt feeders (ES-021b and ES-021c) and is discharged into one of two Tertiary Cone
- 118 Crushers (ES-021d and ES-021e). The crushers reduce the material size before discharging it
- onto a common conveyor (ES-021f) for downstream screening. The Tertiary Crusher Sizing
- Screens (ES-022a and ES-022b) size the material into an oversized and an undersized fraction
- which are conveyed either back to the tertiary crushing process (oversized) or to the plant feed
- stockpile (undersized). Baghouses (CD-021 and CD-022) remove dust at strategic locations
- within the tertiary crushing circuit. The dust is then filtered before being returned to the
- downstream conveyor belt system (ES-031, ES-035, and ES-040a).
- 125 After tertiary crushing, ore is transported across I-85 by conveyor to the Plant Feed Stockpile
- 126 (ES-040b) adjacent to the Concentrator. Since the Concentrator processes occur in water,
- material entering the Concentrator is sufficiently wetted to prevent dust emissions.
- 128 The material is conveyed to the DMS Feed Bin (ES-039a) before being transferred to a prep
- screen by DMS Belt Feeders #1 and #2 (ES-039b and ES-039c). The material is saturated by
- sprayers on the prep screen and the process is sufficiently wet to prevent dust emissions until
- the material is dried downstream. The wet material undergoes dense media separation, wet
- milling, magnetic separation, and further flotation separation in the Concentrator. Dense media
- separation (DMS) separates concentrated spodumene product from other material that does not
- contain spodumene. Streams from the DMS process are wet-milled to reduce size and then
- undergo a 2-stage flotation separation process which results in concentrated spodumene
- product, and tailings (material that contains no spodumene). The spodumene concentrate
- produced in the DMS circuit will be dried in the natural gas-fired dryer (ES-039d) before
- undergoing final magnetic separation (ES-043a through ES-043e) to remove undesirable
- magnetic material to be conveyed via the Coarse Magnetics Conveyor (ES-043f) to the DMS
- Rejects Bin (ES-025). The concentrated spodumene product is conveyed via the Coarse
- 141 Concentrate Conveyor (ES-043q) to the Concentrate Load Out Bins (ES-012 and ES-013).
- Baghouses (CD-039 and CD-043) remove dust at strategic locations within the Concentrator
- before the material is wetted and after the material exits the dryer.
- The filtered tailings are conveyed across I-85 to a truck load out station for shipment to the off-
- site Archdale storage facility. The spodumene concentrate produced in the DMS and flotation
- processes is also transported by conveyor across I-85 to a railcar loading station (ES-005) for
- shipment.
- 148 A process flow diagram is provided as Figure 4 below. The location of the emission sources is
- provided in Figures 5 and 6 below.

Figure 4. Process Flow Diagram

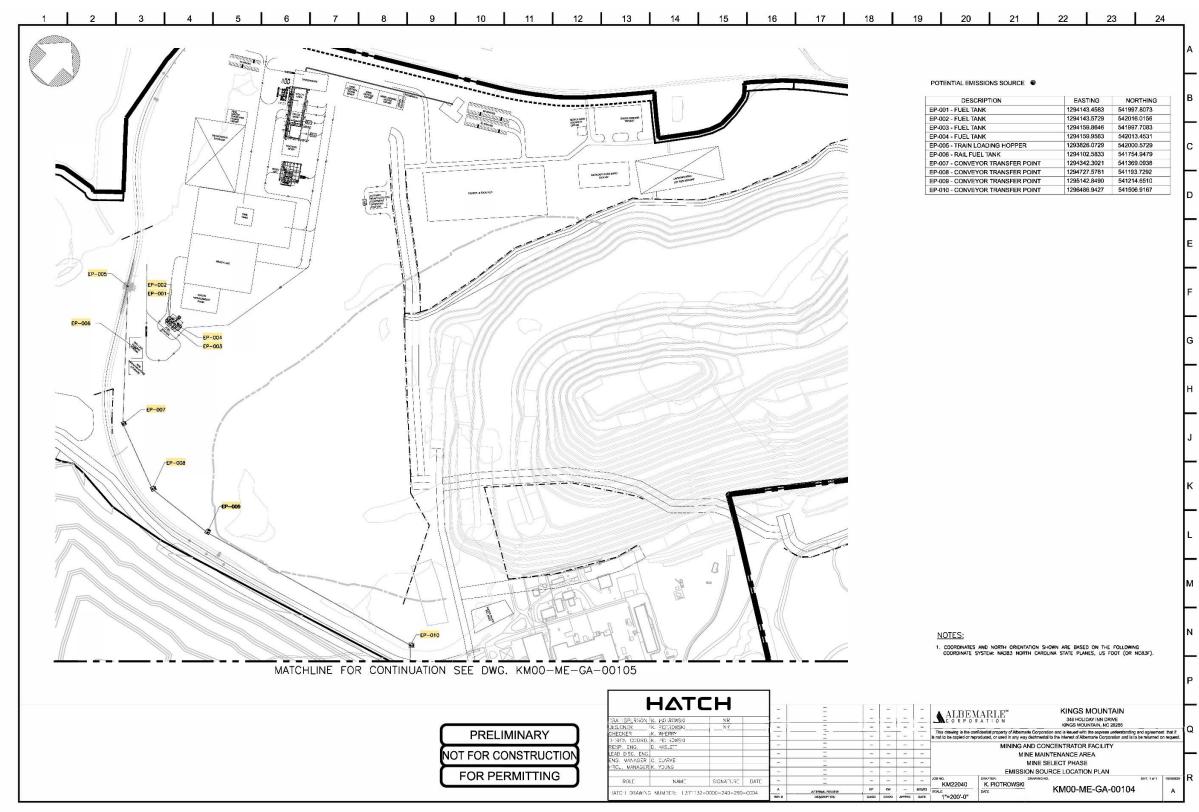
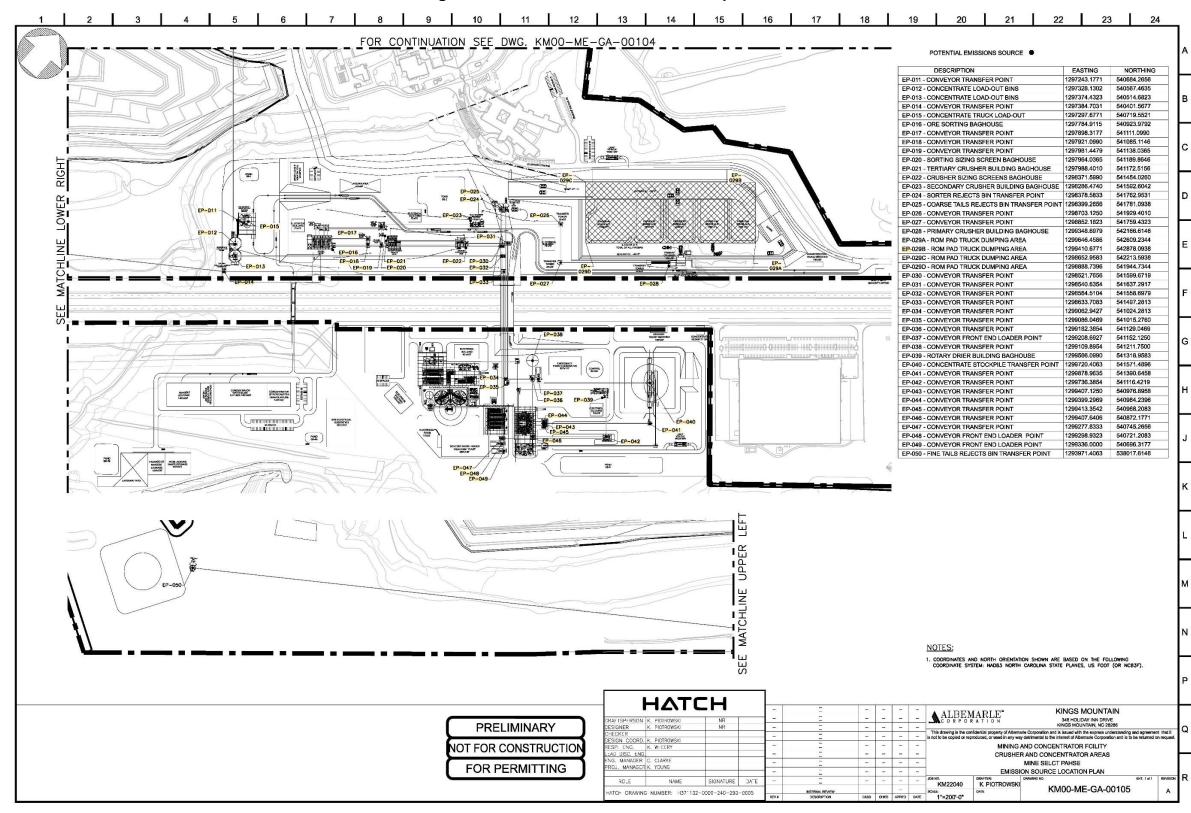



Figure 6. Emission Source Location Map #2

4. POTENTIAL-TO-EMIT EMISSION CALCULATIONS

- 157 The following section provides the basis for the potential-to-emit (PTE) calculations for
- emissions associated with the Project. PTE emission calculations are based on the maximum
- hourly capacity of each emission unit operating for 8,760 hours per year. The emission
- calculation methodology is described in further detail below.

Emissions Summary

156

161

166

- The PTE and projected actual emissions of criteria pollutants and HAPs for the proposed mine
- and Concentrator emission units are summarized in Table 1 and are compared to the Title V
- and PSD permitting thresholds. Hazardous air pollutants (HAPs) are comprised of 188
- compounds that EPA regulates under the Clean Air Act.

Table 1: Source PTE for Criteria Pollutants and HAPs (tons per year)

Pollutants	PM ₁₀	PM _{2.5}	NOx	со	SO₂	voc	Single HAP (Hexane)	Total HAP	GHG (CO2e)
Total Uncontrolled Emissions (PTE)	22.84	4.33	7.32	11.53	0.62	20.71	0.25	0.27	3,467
Total Controlled Emissions (Actual)	3.19	1.36	7.32	11.53	0.62	12.71	0.25	0.27	3,467
Title V Permitting Thresholds	100	100	100	100	100	100	10	25	-
Prevention of Significant Deterioration Threshold	250	250	250	250	250	250	-	-	-

- The proposed facility totals are below Title V thresholds as the PTE emissions are less than 100
- tpy for each criteria pollutant and are less than 10 tpy of an individual HAP and 25 tpy of total
- HAPs. Therefore, the Project is classified as a non-Title V source.
- 170 Cleveland County is designated as in attainment for all criteria pollutants, and the facility is not
- included in the 28 listed categorical sources for PSD. Therefore, the Project is also a PSD minor
- source since the PTE for each criteria pollutant is less than 250 tpy.
- 173 Below is a discussion of the methods used to calculate potential and projected emissions from
- the emission sources at the Kings Mountain facility. PTE emissions were estimated using the

maximum hourly capacity of each emission unit operating for 8,760 hours per year. Projected emissions were estimated using anticipated hours of operation for each circuit in the facility. Dust emissions are generated in the mine by scalpers, crushers, screens, transfer equipment, storage piles, haul trucks, drilling, and blasting. Fugitive emissions from haul trucks, drilling, and blasting are not included as part of the PTE since the facility is not a named categorical source. Material streams and processes with a moisture content of 10% or greater are assumed to produce no fugitive dust and are not included as air emission sources. According to USEPA AP-42 Section 11.19 - Construction Aggregate Processing, "some of the individual operations such as wet crushing and grinding, washing, screening, and dredging take place with "high" moisture (more than about 1.5 to 4.0 weight percent). Such wet processes do not generate appreciable particulate emissions (USEPA 1995)."

Ore Crushing and Sorting Emissions

Material processing emission factors from AP-42, Chapter 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing and Chapter 13.2.4 Aggregate Handling and Storage Piles were used to calculate fugitive dust emissions based on maximum material throughputs for material processing equipment, transfer points, and storage piles.

Dust from the significant ore processing emission sources (e.g., crushers, sorters, sizing screens, and conveyors) is controlled by baghouses (CD-016, CD-018, CD-020, CD-021, CD-022, CD-023, and CD-040). Fans induce air flow to capture the majority of dust generated. The filters are cleaned by air pulses, and the dust collected is screw conveyed to belt conveyors to be either processed or disposed of downstream. Dust from the storage bins is controlled by bin vent filters (CD-024, and CD-025). Dust collector emission calculations are based on collection efficiency of 95% and a device control efficiency of 99%. The control devices are listed in Table 2 below with the associated emission sources. Specification sheets for the dust collection systems are provided in Appendix C.

Table 2: Ore Crushing and Sorting Control Devices and Associated Emission Sources

Control Device	Control Device Description	Associated Emission Sources	Emission Point
CD-016	Ore Sorting Baghouse	ES-016a and ES-016b, ES-019, ES-030	EP-016
CD-018	Sorter Bypass Conveyor Baghouse	ES-017a, ES-017b, ES-018 through ES-018d	EP-018
CD-020	Sorter Sizing Screen Baghouse	ES-020a, ES-020b, ES-020c	EP-020
CD-021	Tertiary Crusher Baghouse	ES-021a through ES-021f	EP-021
CD-022	Tertiary Sizing Screen Baghouse	ES-022a, ES-022b, ES-022c, ES-031	EP-022
CD-023	Secondary Crusher Baghouse	ES-023a through ES-023g, ES-026, ES-027	EP-023
CD-028	Primary Crusher Baghouse	ES-028a through ES-028d	EP-028
CD-040	Stockpile Sizing Screen Baghouse	ES-035, ES-040a through ES-040f	EP-040

Concentrator and Material Load Out Emissions

The majority of the processes in the Concentrator consist of a slurry of minerals mixed with water and chemical reagents added to enhance material separation. These wet processes produce no particulate emissions. The volatile organic compounds (VOC) contained in the chemical reagents are conservatively assumed to fully evaporate. The only reagent that contains VOC is methyl isobutyl carbinol (ES-051). Methyl isobutyl carbinol is not a listed HAP. All other reagent usage operations qualify as an insignificant activity (IES-112). SDSs for each reagent are provided in Appendix C.

Emissions from the 30 MMBtu/hr natural gas-fired dryer (ES-039d) were calculated using factors from AP-42, Chapter 1.4 Natural Gas Combustion. Process-generated particulate emission factors for the rotary dryer are based on facility design parameters. A dedicated baghouse (CD-039) collects dust generated during the drying process. A baghouse (CD-043) collects dust generated during subsequent magnetic separation once the spodumene

concentrate has been dried.

Spodumene concentrate is conveved to the Concentrate Load Out Bins (ES-012 and

Spodumene concentrate is conveyed to the Concentrate Load Out Bins (ES-012 and ES-013) from which it will primarily be conveyed to the Rail Load Out Bin (ES-005) to be shipped off-site via rail. Spodumene concentrate may alternatively be loaded to trucks via the Truck Load Out Stacker Conveyor (ES-015). Rejected material from the ore sorter and the DMS operations are conveyed to the Sorter Rejects Bin (ES-024) and the DMS Rejects Bin (ES-025), respectively. Filtered tailings are sufficiently wet that no emissions will be generated, therefore, the tailings handling operations are not included as emission sources. Dust from the storage bins is controlled by bin vent filters (CD-005, CD-012, CD-013, CD-024, CD-025). The control devices are listed in Table 3 below with the associated emission sources.

Table 3: Concentrator and Material Load Out Control Devices and Associated Emission Sources

Control Device	Control Device Description	Associated Emission Sources	Emission Point
CD-005	Rail Load Out Bin Vent Filter	ES-005	ES-005
CD-012	Concentrate Load Out Bin Vent Filter	ES-012	ES-012
CD-013	Concentrate Load Out Bin Vent Filter	ES-013	EP-013
CD-024	Sorter Rejects Bin Vent Filter	ES-024	EP-024
CD-025	DMS Rejects Bin Vent Filter	ES-025	EP-025
CD-039	DMS Dryer Baghouse	ES-039a through ES-039d	EP-039
CD-043	DMS and Mag Sep Baghouse	ES-032, ES-042, ES-043a through ES-043g, ES-047	EP-043

Emergency Engines

A diesel emergency generator (IES-110) and a diesel emergency fire pump engine (IES-111) are used to power various equipment in the plant during power outage events and for fire

control, respectively. Both engines are rated at 536 hp. These sources are both classified as insignificant activities under the definition of "insignificant activities because of size or production rate" in 15A NCAC 02Q .0503(8) as the potential emissions of each criteria pollutant is below five tpy and the potential emissions of each HAP is below 1,000 pounds per year. Emissions from the engines were calculated using the applicable standards from NSPS Subpart IIII and AP-42, Chapter 3.3 Gasoline and Diesel Industrial Engines. Diesel storage tank emissions were estimated using the Oklahoma DEQ Online Storage Tank Emissions Calculation Tool as recommended by NC DAQ. The storage tanks are classified as insignificant activities under the definition of "insignificant activities because of size or production rate" in 15A NCAC 02Q .0503(8) as the potential emissions of each criteria pollutant is below five tpy and the potential emissions of each HAP is below 1,000 pounds per year.

5. AIR QUALITY REGULATORY REVIEW

- 242 This section documents the applicability determinations made for federal and state air
- 243 regulations. This summary does not address regulatory applicability of the existing Processing
- 244 Plant, which has been determined by NC DEQ to be a separate source since it operates
- independently and cannot process the spodumene concentrate produced by the Concentrator.
- Federal air quality regulations reviewed include Title 40, Code of Federal Regulations, Part 52,
- 247 PSD program (40 CFR 52); Part 60, New Source Performance Standards (40 CFR 60); Part 61,
- 248 pollutant-specific National Emissions Standards for Hazardous Air Pollutants (NESHAP) (40
- 249 CFR 61); Part 63, source category NESHAPs (40 CFR 63); Part 68, Risk Management
- 250 Prevention (RMP) regulations (40 CFR 68); Part 70, Title V Operating Permit regulations (40
- 251 CFR 70); and Part 82, stratospheric ozone regulations (40 CFR 82).
- 252 DEQ regulations fall under two main categories: generally applicable regulations under 15A
- NCAC 02Q (e.g., permitting requirements) and specific applicability regulations under 15A
- NCAC 02D (e.g., particulate matter (PM) standards for manufacturing equipment). This
- application details the applicability of source-specific regulations in 15A NCAC 02D.

Title V Source Classification

241

256

261

265

270

271

272

273

- 257 The Title V program only regulates emissions from "major" stationary sources of regulated
- pollutants. A stationary source is considered "major" under the Title V program if the facility:
- has actual or potential emissions at or above the major source thresholds of 100 tpy for any "criteria pollutant" or
 - has HAP emissions of 10 tpy of any single HAP or 25 tpy for any combination of HAPs.
- As shown in Table 1 and Appendix B, facility-wide potential emissions of all criteria pollutants
- are each less than 100 tpy and HAP emissions fall below their respective thresholds of 10 and
- 25 tpy. Therefore, the Kings Mountain facility is a minor source with respect to Title V.

PSD Source Classification

- The Project is located in Cleveland County, which is designated as "attainment" or
- 267 "unclassifiable" for all criteria pollutants. The PSD program only regulates emissions from
- 268 "major" stationary sources of regulated pollutants located in attainment areas. A stationary
- source is considered "major" under the PSD program if the facility:
 - belongs to one of the 28 named source categories in 40 CFR 51.166(b)(1)(i)(a) and has a PTE of 100 tpy of any pollutant subject to regulation; or
 - has a PTE of 250 tpy or more of any pollutant subject to regulation, regardless of its source category.
- 274 This facility is not one of the 28 names source categories, therefore, the 250 tpy threshold
- applies and does not include fugitive emissions. As shown in Table 1 and Appendix B, facility-

- wide potential emissions of all pollutants subject to regulation are each less than 250 tpy.
- Therefore, the Kings Mountain facility is a minor source with respect to PSD.

New Source Performance Standards

278

287

288

293

303

- NSPS require new, modified, or reconstructed sources to control emissions to the level
- achievable by the best demonstrated technology as specified in the applicable provisions.
- Moreover, any source subject to a NSPS is also subject to the general provisions of NSPS
- Subpart A, except as noted. The NC DEQ has been delegated by the United States
- 283 Environmental Protection Agency (EPA) to regulate facilities subject to NSPS. Regulatory
- 284 requirements for facilities subject to NSPS are contained in 15A NCAC 02D.0524 and 40 CFR
- 285 Part 60. The following sections discuss NSPS that were considered for applicability, and the
- basis for applicability/non-applicability of each.

Table 4: New Source Performance Standards Applicability Determination

Subpart	Subject	Applicability
Α	General Provision	Yes
LL	Standards of Performance for Metallic Mineral Processing Plants	No
000	Standards of Performance for Nonmetallic Mineral Processing	Yes
UUU	Standards of Performance for Calciners and Dryers in Mineral Industries	No
IIII	Standards of Performance for Compression Ignition Internal Combustion Engines	Yes

NSPS Subpart A – General Provisions

- NSPS Subpart A contains general requirements for notification, testing, and reporting for the
- NSPS program. The subpart applies to each project that has an affected source as defined
- under another subpart. As the project has units subject to one or more standards under 40 CFR
- 292 60 as discussed below, subpart A applies to the facility.

NSPS Subpart LL – Metallic Mineral Processing Plants

- 294 The affected facilities under NSPS Subpart LL are various processing equipment at metallic
- 295 mineral processing plants: each crusher and screen in open-pit mines; each crusher, screen,
- bucket elevator, conveyor belt transfer point, thermal dryer, product packaging station, storage
- bin, enclosed storage area, truck loading station, truck unloading station, railcar loading station,
- and railcar unloading station at the mill or concentrator. A metallic mineral concentrate is
- defined as containing at least one of the following metals in any of its oxidation states and at a
- 300 concentration that contributes to the concentrate's commercial value: Aluminum, copper, gold,
- iron, lead, molybdenum, silver, titanium, tungsten, uranium, zinc, and zirconium. Since the
- spodumene ore is being processed for only its lithium content, this subpart does not apply.

NSPS Subpart OOO - Nonmetallic Mineral Processing

- The affected facilities under NSPS Subpart OOO are each crusher, grinding mill, screening
- operation, bucket elevator, belt conveyor, bagging operation, storage bin, and enclosed truck or
- 306 railcar loading station. A particulate matter emission limit of 0.014 gr/dscf applies to all

- equipment with capture systems, and an opacity limit of 7% applies to dry control devices on
- individual enclosed storage bins and other fugitive emission sources. The facility will comply
- with all applicable requirements and will ensure compliance through VE observations,
- 310 maintenance programs, and parametric monitoring.
- 311 This subpart applies to:
- 312 ES-028a through ES-028d Primary Crushing Operations
- 313 ES-027 Scalping Screen Feed Conveyor #1
- 314 ES-026 Scalping Screen Feed Conveyor #2
- 315 ES-023a through ES-023g Secondary Crushing Operations
- 316 ES-020a through ES-020c Sorting Sizing Screen
- 317 ES-017a and ES-017b Sorting Bypass Conveyor #1 and #2
- 318 ES-018 Sorting Bypass Conveyor #2
- 319 ES-016a, ES-016b, ES-018a through ES-018d Ore Sorting Operations
- 320 ES-022a through ES-022c Tertiary Crusher Sizing Screens #1/#2
- 321 ES-019 Tertiary Crushing Feed Conveyor
- 322 ES-021a through ES-021e Tertiary Crushing Operations
- 323 ES-030 Sorter Rejects Conveyor
- 324 ES-031 Stockpile Feed Conveyor #1
- 325 ES-035 Stockpile Feed Conveyor #2
- 326 ES-040a through ES-040d Plant Feed Stockpile Operations
- 327 ES-041 Stockpile Discharge Conveyor
- 328 ES-043a through ES-043g DMS and Magnetic Separation Operations
- 329 ES-039a through ES-039d DMS Dryer Operations
- 330 ES-032, ES-042, ES-047 DMS Dryer Discharge Conveyors
- 331 ES-005 Rail Load Out Station
- 332 ES-007, ES-008, ES-009, ES-010 Rail Load Out Conveyors
- 333 ES-011 Concentrate Truck Load Out Belt Feeder
- 334 ES-012, ES-013 Concentrate Load Out Bins
- 335 ES-015 Truck Load Out Stacker Conveyor
- 336 ES-024 Sorter Rejects Bin
- 337 ES-025 DMS Rejects Bin

This subpart does not apply to wet material processing operations as defined in 40 CFR 60.671 and therefore it is not applicable to emission sources located within the Concentrator.

NSPS Subpart UUU – Calciners and Dryers in Mineral Industries

340

344

347

348

350

351

358

359

360 361

362

363

364

365

366

367

368

369

370

341 The affected facilities under NSPS Subpart UUU are each calciner and dryer at a mineral

processing plant. *Mineral processing plant* means any facility that processes or produces any of

343 the following minerals, their concentrates or any mixture of which the majority (>50 percent) is

any of the following minerals or a combination of these minerals: alumina, ball clay, bentonite,

diatomite, feldspar, fire clay, fuller's earth, gypsum, industrial sand, kaolin, lightweight

aggregate, magnesium compounds, perlite, roofing granules, talc, titanium dioxide, and

vermiculite. As none of these minerals are being produced, this subpart does not apply.

NSPS Subpart IIII – Compression Ignition Internal Combustion Engines

The affected facilities under NSPS Subpart IIII (Standards of Performance for Stationary

Compression Ignition Internal Combustion Engines) are stationary compression ignition (CI)

internal combustion engines (ICE), which commenced construction after July 11, 2005, and

were manufactured after April 1, 2006. The Project has two diesel-fired emergency engines

353 (IES-110 and IES-111) each rated at 536 hp. The engines were manufactured after April 1,

2006, and will commence construction after July 11, 2005. Therefore, the engines are subject to

355 Subpart IIII. The engines will be EPA-certified by the manufacturer to meet the applicable

emission standards under NSPS Subpart IIII. The facility will comply with NSPS Subpart IIII by

using ultra-low sulfur diesel, tracking hours of operation through a non-resettable hour meter,

and operating the engine in accordance with manufacturers' written instructions.

National Emissions Standards for Hazardous Air Pollutants (NESHAP)

NESHAP are emission standards for HAP that apply to major sources of HAP (facilities that exceed the major source thresholds of 10 tpy of a single HAP or 25 tpy of any combination of HAP) or listed area sources. Moreover, any source subject to a NESHAP is also subject to the general provisions of NESHAP Subpart A, except as noted. Regulatory requirements for facilities subject to NESHAP are contained in 15A NCAC 02D .1110-.1111 and 40 CFR Part 61 and Part 63. Since HAP emissions are limited to below the major source level in Condition A.10, the Albemarle Kings Mountain facility is classified as an area source of HAP. There are no Part 61 NESHAP regulations that apply to the facility. However, certain Part 63 NESHAP regulations apply to area sources of HAP and are summarized below.

Table 5: National Emission Standards for Hazardous Air Pollutants Applicability Determination

Subpart	Subject	Applicability
А	General Provision	Yes
ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines	Yes

Subpart	Subject	Applicability
JJJJJJ	National Emissions Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources	No
VVVVV	National Emissions Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources	No

40 CFR 63 Subpart A - General Provisions

- 40 CFR 63 Subpart A (General Provisions) contains general requirements for notification,
- testing, and reporting for the NESHAPs program. The subpart applies to each project that has
- 374 an affected source as defined under another subpart. As the project will have units subject to
- one or more standards under 40 CFR 63, subpart A applies.

376 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines

- 377 40 CFR 63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants:
- 378 Stationary Reciprocating Internal Combustion Engines) applies to facilities that own or operate a
- stationary reciprocating ICE at a major or area source of HAP emissions. As stated above, the
- facility operates engines which are subject to the requirements outlined in NSPS Subpart IIII.
- Pursuant to 40 CFR 63.6590(c), compliance with Subpart ZZZZ is demonstrated by complying
- with the requirements of NSPS Subpart IIII, and no further requirements of Subpart ZZZZ apply.

383 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers Area

384 Sources

390

394

400

371

- NESHAP Subpart JJJJJJ contains requirements for owners and operators of industrial,
- 386 commercial or institutional boilers located at an area source of HAP. Albemarle's rotary DMS
- dryer (ES-039) is a direct-fired heater, which does not meet the definition of an industrial,
- 388 commercial or institutional boiler. Therefore, there are no units at the facility that are subject to
- 389 the requirements of NESHAP Subpart JJJJJJ.

40 CFR 63 Subpart VVVVVV - Chemical Manufacturing Area Sources

- 391 The Kings Mountain Lithium Mine facility is not considered a chemical manufacturing process
- unit since it does not use, produce, or process any HAP regulated by NESHAP Subpart
- 393 VVVVVV. Therefore, NESHAP Subpart VVVVVV is not applicable to this project.

Risk Management Plan Regulations

- 395 Subpart B of 40 CFR Part 68 outlines the requirements for RMP plans pursuant to Section
- 396 112(r) of the Clean Air Act. Applicability of the Subpart is determined based on the type and
- 397 quantity of chemicals stored at the facility. The Kings Mountain facility does not store any
- 398 regulated chemical above threshold quantities; therefore, the facility is not subject to the RMP
- requirements of 40 CFR Part 68.

Title V Operating Permit Program

- 401 40 CFR Part 70 establishes the federal Title V Operating Permit program. North Carolina has
- incorporated the provisions of this federal program in its Title V Operating Permit program under

403 15A NCAC 02Q .0500. The major source thresholds with respect to North Carolina's Title V Operating Permit program regulations are 10 tpy of a single HAP, 25 tpy of any combination of 404 HAP, and 100 tpy of any criteria pollutants. Potential emissions of all pollutants are below their 405 respective thresholds. Therefore, the Kings Mountain facility is not subject to the Title V permit 406 407 program requirements. See Table 1 and Appendix B for detailed facility-wide potential 408 emissions calculations for all criteria pollutants and HAPs. 409 Stratospheric Ozone Protection Regulations The requirements originating from Title VI of the Clean Air Act, entitled Protection of 410 Stratospheric Ozone, are contained in 40 CFR Part 82. Subparts A through E and Subparts G 411 and H. Subpart F (Recycling and Emissions Reduction) potentially applies if the facility 412 413 maintains, services, or disposes of appliances that utilize Class I or Class II ozone depleting substances. Subpart F generally requires persons completing the repairs, service, or disposal to 414 415 be properly certified. All repairs, service, and disposal of ozone depleting substances from any 416 chillers and air conditioners at the facility will be completed by a certified technician.

State Applicability Analysis

418

421

- North Carolina's State Implementation Plan (SIP) is codified under 15A NCAC. The regulatory
- analysis for the Kings Mountain facility is presented in the following sections.

Table 6: State Applicability Determination

Rule	Subject	Applicability
15A NCAC 02D.01000300 15A NCAC 02Q.01000400	General Regulations	Yes
15A NCAC 02D.0503	Particulates from Fuel Burning Indirect Heat Exchangers	No
15A NCAC 02D.0509	Particulates from Mica or Feldspar Processing Plants	No
15A NCAC 02D.0510	Particulate from Sand, Gravel, or Crushed Stone Operations	Yes
15A NCAC 02D.0515	Particulates from Miscellaneous Industrial Processes	Yes
15A NCAC 02D.0516	Sulfur Dioxide Emissions from Combustion Sources	Yes
15A NCAC 02D.0521	Control of Visible Emissions	Yes
15A NCAC 02D.0540	Particulate from Fugitive Dust Emission Sources	Yes
15A NCAC 02D.0900	Volatile Organic Compounds	No
15A NCAC 02D.0958	Work Practices for Sources of Volatile Organic Compounds	No
15A NCAC 02D.1100 15A NCAC 02Q.0700	Control of Toxic Air Pollutants	No
15A NCAC 02D.1400	Nitrogen Oxides	No
15A NCAC 02D.1806	Control of Odors	Yes

422 15A NCAC 02D.0100-.0300 and 02Q.0100-.0400 – General Regulations

- These are general regulatory requirements that apply to all sources in the state of North
- 424 Carolina, and therefore will apply to the Kings Mountain facility.

425 15A NCAC 02D.0503 – Particulates from Fuel Burning Indirect Heat Exchangers

- This regulation applies to all fuel burning units meeting the definition of an "indirect heat
- 427 exchanger." An indirect heat exchanger is defined as "any equipment used for the alteration of
- 428 the temperature of one fluid by the use of another fluid in which the two fluids are separated by
- an impervious surface such that there is not mixing of the two fluids." The rotary DMS Dryer
- 430 (ES-039d) is a directed-fired heater and therefore, this regulation does not apply.

15A NCAC 02D.0509 – Particulates from Mica or Feldspar Processing Plants

- 432 This regulation does not apply to the Project equipment as the operations do not produce these
- 433 materials. Although mica is removed from the process in the flotation plant, it is not a
- 434 commercial product, and all the related processes are conducted in water, therefore, no
- 435 emissions are generated.

431

436

437

15A NCAC 02D.0510 - Particulate from Sand, Gravel, or Crushed Stone Operations

- This regulation applies to sand, gravel, or crushed stone operations. The rock and spodumene 438 439 operations will be subject to this regulation and will comply by taking measures to reduce to a minimum any particulate matter from becoming airborne to prevent exceeding the ambient air 440 441 quality standards beyond the property line. The facility will comply with the requirements of this regulation by using necessary control measures and by complying with the requirements of 442 NSPS Subpart OOO. 443 15A NCAC 02D.0515 - Particulates from Miscellaneous Industrial Processes 444 15A NCAC 02D.0515 applies to processes with PM stack emissions not regulated by any other 445 emission control standards. The stack emissions from the Rotary Dryer (ES-039d) are subject to 446 emission limits calculated according to the following equations: 447 $E = 4.10 \text{ P}^{0.67} \text{ for P} \le 30. \text{ or }$ 448 $E = 55.0 \text{ P}^{0.11} - 40 \text{ for P} > 30$ 449 450 Where E = maximum allowable PM emission rate in pounds per hour, and 451 P = process rate in tons per hour. 452 The facility will operate in such a manner as to maintain compliance with the calculated 453 emission limits. 15A NCAC 02D.0516 - Sulfur Dioxide Emissions from Combustion Sources 454 This regulation applies to all combustion sources present at the facility. Specifically: 455 Emission of sulfur dioxide from any source of combustion that is discharged from any 456 457 vent, stack, or chimney shall not exceed 2.3 pounds of sulfur dioxide per million Btu input. 458 Sulfur dioxide formed by the combustion of sulfur in fuels, wastes, ores, and other substances shall be included when determining compliance with this standard. Sulfur 459 dioxide formed or reduced as a result of treating flue gases with sulfur trioxide or other 460 461 materials shall also be accounted for when determining compliance with this standard. 462 The facility will comply with this limit by combusting natural gas and ultra-low sulfur diesel. 463 15A NCAC 02D.0521 - Control of Visible Emissions 464 This regulation applies to all units with visible emissions. Specifically: 465 For sources manufactures after July 1, 1971, visible emissions shall not be more than 20 percent opacity when averaged over a six-minute period. However, except for sources required to comply 466 with Paragraph (g) of this Rule, six-minute averaging periods may exceed 20 percent opacity if: 467 (1) No six-minute period exceed 87 percent opacity; 468 (2) No more than one six-minute period exceeds 20 percent opacity in any hour; and 469 470 (3) No more than four six-minute periods exceed 20 percent opacity in any 24-hour period. 471 The facility will operate in compliance with the requirement to limit opacity to less than 20%. However, sources which must comply with a visible emissions standard in 15A NCAC 02D.0524 472 473 "New Source Performance Standards" or 15 NCAC 02D.1110 "Control of Toxic Air Pollutants" 474 shall meet those more stringent standards in addition to the 2D.0521 visible emissions standard.

15A NCAC 02D.0540 – Particulate from Fugitive Dust Emission Sources

- 476 15A NCAC 02D.0540 restricts the emission of excess fugitive dust emissions beyond the
- property line that may cause or contribute to substantive complaints. The facility will operate in
- such a manner to comply with this regulation.

479 15A NCAC 02D.0900 – Volatile Organic Compounds

- Per 15A NCAC 02D.0902, the regulations in this section apply to sources with the potential to
- 481 emit more than 100 tons/year of VOC emissions located in Cabarrus County, Gaston County,
- 482 Lincoln County, Mecklenburg County, Rowan County, Union County, Davidson Township and
- Coddle Creek Township in Iredell County with the exception of the following rules of this Section
- which apply statewide:

494

498

500

501

502

503

504

505

506

- .0925, Petroleum Liquid Storage in Fixed Roof Tanks, for fixed roof tanks at gasoline bulk plants and gasoline bulk terminals;
- .0926, Bulk Gasoline Plants;
- .0927, Bulk Gasoline Terminals;
- .0928, Gasoline Service Stations Stage I;
- .0932, Gasoline Truck Tanks and Vapor Collection Systems;
- .0933, Petroleum Liquid Storage in External Floating Roof Tanks, for external floating roof tanks at bulk gasoline plants and bulk gasoline terminals;
- .0948, VOC Emissions from Transfer Operations;
 - .0949, Storage of Miscellaneous Volatile Organic Compounds; and
- .0958, Work Practices for Sources of Volatile Organic Compounds.
- Cleveland County is not one of the listed nonattainment areas and the facility has a VOC
- potential-to-emit under 100 tpy, therefore, this rule does not apply.

15A NCAC 02D.0958 – Work Practices for Sources of Volatile Organic Compounds

This rule applies as follows:

This Rule applies to all facilities that use volatile organic compounds as solvents, carriers, material processing media, or industrial chemical reactants, or in other similar uses, or that mix, blend, or manufacture volatile organic compounds, or emit volatile organic compounds as a product of chemical reactions.

Cleveland County is not one of the listed nonattainment areas and the facility has a VOC potential-to-emit under 100 tpy, therefore, this rule does not apply.

15A NCAC 02D.1100 – Control of Toxic Air Pollutants – State Enforceable Only

- 507 The requirements pertaining to the control of toxic air pollutants (TAP) under 15A NCAC
- 508 02D.1100 apply if the Project is required to have a permit under 15A NCAC 02Q.0700. More
- specifically, pursuant to 15A NCAC 02Q.0711 (a) and (b):

- A permit to emit toxic air pollutants shall be required for any facility [...] whose actual rate of
- 511 emissions from all sources are greater than any one of the following toxic air pollutant permitting
- 512 emission rates.
- No TAP emissions exceed their respective emission rates under 15A NCAC 02Q .0711;
- 514 therefore, no sources of TAP emissions are subject to 15A NCAC 02D.1100.
- 515 **15A NCAC 02D.1400 Nitrogen Oxides**
- Per 15A NCAC 2D.1402, the regulations in this section apply to sources with the potential to
- emit more than 100 tons/year of NO_X emissions located in Cabarrus County, Gaston County,
- Lincoln County, Mecklenburg County, Rowan County, Union County, Davidson Township and
- 519 Coddle Creek Township in Iredell County with the exception of the following rules of this Section
- which apply statewide:
- .1409(c) and .1416 through .1423
- 522 Cleveland County is not one of the listed nonattainment areas and the facility has a NO_X
- 523 potential-to-emit under 100 tpy, therefore, this rule does not apply.
- 15A NCAC 02D.1806 Control of Odors State Enforceable Only
- 525 This regulation applies to all facilities and requires that facilities take precautions to minimize or
- 526 eliminate odorous emissions. The facility will operate in such a manner to comply with this
- 527 regulation

527 APPENDIX A NCDEQ DIVISION OF AIR QUALITY – APPLICATION FOR AIR PERMIT TO CONSTRUCT/OPERATE FORMS

529530

Doc No.: KM60-EN-RP-9091 Revision: 1

Forms A and A2-A3

FORM A

GENERAL FACILITY INFORMATION

	DEQ/Division of Air Quality - Applica		•	Α
NOT	TE - APPLICATION WILL <u>NOT</u> BE PR	OCESSED WITHOUT TH	HE FOLLOWING:	
Local Zoning Consistency Determinatio	Appropriate Number of 0	Copies of Application	Application Fee (please check one option below)	
(new or modification only) ✓ Responsible Official/Authorized Contact			Not Required	
	GENERAL IN	FORMATION		
Legal Corporate/Owner Name: Albemarle U.S., I				
Site Name: Albemarle Kings Mountain Facili				
Site Address (911 Address) Line 1: 348 Holiday In	•			
Site Address Line 2:				
City: Kings Mountain		State: North Carolina		
Zip Code: 28086		County: Cleveland		
	CONTACT IN			
Responsible Official/Authorized Contact		Invoice Contact		
Name & Title: Chris Danauskas - Site Director		Name & Title: John Kuhn - N	Mine Environmental Lead	
Mailing Address Line 1: 348 Holiday Inn Drive		Mailing Address Line 1: 348 H		
Mailing Address Line 2:		Mailing Address Line 2:		
City: Kings Mountain State: North Caro	olina Zip Code: 28086	City: Kings Mountain	State: North Carolina Zip Code: 28086	
Primary Phone No.: (302) 563-0074	Fax No.:	Primary Phone No.: (704) 734	4-2708 Fax No.:	
Secondary Phone No.:		Secondary Phone No.:		
Email Address: chris.danaukas@albemarle.com		Email Address: john.kuhn@a	albemarle.com	
Facility/Inspection Contact		Permit/Technical Contact		<u>,</u>
Name & Title: John Kuhn - Mine Environmental	Lead	Name & Title: John Kuhn - M	Mine Environmental Lead	
Mailing Address Line 1:348 Holiday Inn Drive		Mailing Address Line 1: 348 H	Holiday Inn Drive	
Mailing Address Line 2:		Mailing Address Line 2:		
City: Kings Mountain State: North Car	rolina Zip Code: 28086	City: Kings Mountain	State: North Carolina Zip Code: 28086	
Primary Phone No.: (704) 734-2708	Fax No.:	Primary Phone No.: (704) 734	4-2708 Fax No.:	
Secondary Phone No.:		Secondary Phone No.:		
Email Address: john.kuhn@albemarle.com		Email Address: john.kuhn@a	albemarle.com	
	APPLICATION IS F	BEING MADE FOR:		
New Non-permitted Facility/Greenfield	Modification of Facility (permitted)	Renewal Litle V	Renewal Non-Title V	
Name Change Only Ownership Change	—	Renewal with Mod		
	FACILITY CLASSIFICATION AFTE			
General		Prohibitory Small	Synthetic Minor Title V	
		FORMATION		
Describe nature of (plant site) operation(s):	:			
Spodumene ore is mined and processed in	a order to extract spodumene concentr	rate that will be shipped of	off-site.	
		E 111 IB V		
D: 010 114 100 0 1 4470		Facility ID No.		
Primary SIC/NAICS Code: 1479	OATION: 25 242792	Current/Previous Air Peri	mit No. Expiration Date:	
FACILITY LOC		Longitude: -81.351529		
Does this application contain confidential d	lata? O YES O NO	(See Ins	al Office prior to submitting this application.*** tructions)	
	PERSON OR FIRM THAT F	PREPARED APPLICATIO	DN	
Person Name: Seth Gately		Firm Name: SWCA Enviro		
Mailing Address Line 1: 113 Edinburgh S Drive		Mailing Address Line 2: S	Suite 120	
City: Cary	State: NC	Zip Code: 27511	County: Wake	
Phone No.: (479) 651-6837	Fax No.:	Email Address: seth.gate		
	SIGNATURE OF RESPONSIBLE O	FFICIAL/AUTHORIZED	CONTACT	
Name (typed): Chris Danaukas		Title: Site Director		
X Signature (Blue Ink):		Date:		

FORMs A2, A3 EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

ES-029 FP rimary Crushing Ope ES-028a A ES-028b V ES-028c F ES-028d S ES-023d S ES-028d S ES-028d S ES-028d S ES-028d S ES-028d S ES-028d S ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-019d T ES-019d T ES-019d T ES-019d T ES-022c T ES-022d T ES-021d T ES-0	Apron Feeder Conveyor Whorating Grizzly Whorating Grizzly Primary Jaw Crusher Sacrificial Conveyor Derations Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Bin Secondary Crusher Feel Bin Secondary Crusher Belf Feeder Secondary Crusher Belf Feeder Socroing Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Sizing Screen Coarse Sorting Conveyor Sorting Spass Conveyor Sorting Spass Conveyor #1 Sorting Spass Conveyor #1 Sorting Bypass Conveyor #2 Sorting Bypass Conveyor #2 Sorting Streen Feed Sorting Bypass Conveyor #2 Sorting Streen Feed Sorting Bypass Conveyor #2 Sorting Streen Fine Sorter #1/#2 Fine Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor #1 Solting Streen Fine Sorter #1/#2 Fine Sorter Bin Bell Feeder - Fine Sorter #1/#2 Forting Forting Feed Conveyor Sorter Rejects Conveyor	CONTROL DEVICE ID NO.	ermitted, Replaced, Deleted CONTROL DEVICE DESCRIPTION / Unpermitted, or Replacement) Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-029 F	DESCRIPTION quipment To Be ADDED By This Application ROM Truck Unloading Area srations Apron Feeder Conveyor Whatling Grizzly Primary Jaw Crusher Sacrificial Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Feeder Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Feeder Secondary Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Bypass Feed Feeder Fill #1 Sorting Bypass Conveyor #1 Sorting	ID NO. (New, Previously) N/A C0-028 C0-028 C0-028 C0-028 C0-023 C0-020 C0-020 C0-020 C0-020 C0-018	DESCRIPTION Unpermitted, or Replacement) Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sypass Converyor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
Eq. 259 Eq. 250 Eq. 260 Eq. 26	quipment To Be ADDED By This Application ROM Truck Unloading Area prations Papron Feeder Conveyor Wibrating Grizzly Primary Jaw Crusher Bacrificial Conveyor Scalping Grizen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Bell Feeder Secondary Cone Crusher Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Sorting Screen Feed Conveyor #2 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor Sorting Bypass Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Selt Feeder - Fine Sorter #1/#2	New, Previously NA CD-028 CD-028 CD-028 CD-028 CD-023 CD-021 CD-020 CD-018 CD-0	Unpermitted, or Replacement) Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-029 FP rimary Crushing Ope ES-028a A ES-028b V ES-028c F ES-028d S ES-023d S ES-028d S ES-028d S ES-028d S ES-028d S ES-028d S ES-028d S ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-018d ES-019d T ES-019d T ES-019d T ES-019d T ES-022c T ES-022d T ES-021d T ES-0	ROM Truck Unloading Area prations Apron Feeder Conveyor Albrating Grizzly Primary Jaw Crusher Scanlping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scondary Crusher Belt Feeder Secondary Crusher Belt Feeder Secondary Consher Sorting Screen Feed Conveyor #1 Sorting Bypass Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Fine Sorting Spyass Conveyor #1 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Fine Sorter #1/#2 Fine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Fine Sorter Sorter #1/#2 Fine Sorter #1/#2	N/A CD-028 CD-028 CD-028 CD-028 CD-028 CD-023 CD-021 CD-021 CD-021 CD-021 CD-021 CD-020 CD-020 CD-020 CD-018	Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
Primary Crushing Ope ES-028a A ES-028b V ES-028b V ES-028c F ES-028d S ES-028c F ES-028d S ES-027 S ES-027 S ES-028 S ES-023a S ES-023a S ES-023a S ES-023a S ES-023a S ES-023b S ES-023d S ES-024d S ES-024d S ES-016d S ES-016b ES	prations Apron Feeder Conveyor Apprations Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scondary Crusher Feed #8 Secondary Crusher Feed Feeder Secondary Conser Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor Sorting Screen Feed Conveyor Sorting Screen Feed Conveyor Sorting Screen Feed Conveyor Sorting Spass Conveyor #1 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Tine Sorter #1/#2 Terlary Crushing Feed Conveyor Sorter Rijip Feed Feed Feed Feeder	CD-028 CD-028 CD-028 CD-028 CD-028 CD-023 CD-028 CD-028 CD-028 CD-028 CD-028 CD-029 CD-029 CD-029 CD-029 CD-029 CD-018 CD	Primary Crusher Baghouse Primary Crusher Baghouse Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-028a A ES-028b V ES-028b V ES-028c F ES-028c F ES-028c F ES-028d S Socondary Crushing C ES-027 S ES-027 S ES-027 S ES-023a S ES-023a S ES-023a S ES-023a S ES-023d S ES-0218 S ES-018b ES-018b B ES-018b B ES-018b ES-018b B ES-018b ES-018b B ES-018b ES-019b T ES-03d S ES-019b T ES-03d S ES-019b T ES-03d S ES-019b T ES-03d S ES-020c T ES-03d S ES-020c T ES-03d S ES-03	Apron Feeder Conveyor Whorating Grizzly Whorating Grizzly Primary Jaw Crusher Sacrificial Conveyor Derations Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Bin Secondary Crusher Feel Bin Secondary Crusher Belf Feeder Secondary Crusher Belf Feeder Socroing Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Sizing Screen Coarse Sorting Conveyor Sorting Spass Conveyor Sorting Spass Conveyor #1 Sorting Spass Conveyor #1 Sorting Bypass Conveyor #2 Sorting Bypass Conveyor #2 Sorting Streen Feed Sorting Bypass Conveyor #2 Sorting Streen Feed Sorting Bypass Conveyor #2 Sorting Streen Fine Sorter #1/#2 Fine Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor #1 Solting Streen Fine Sorter #1/#2 Fine Sorter Bin Bell Feeder - Fine Sorter #1/#2 Forting Forting Feed Conveyor Sorter Rejects Conveyor	CD-028 CD-028 CD-028 CD-023 CD-021 CD-020 CD-020 CD-020 CD-020 CD-018 CD	Primary Crusher Baghouse Primary Crusher Baghouse Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-028b S-028c ES-028d ES-028d S-028d S-028d S-027 S-028 S-028 S-023a S-023a S-023a S-023a S-023d S-020d	wbrating Grizzly Primary Jaw Crusher Sacrificial Conveyor Dperations Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Scalping Screen Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Score Secondary Conser Secondar	CD-028 CD-028 CD-028 CD-023 CD-021 CD-020 CD-020 CD-020 CD-020 CD-018 CD	Primary Crusher Baghouse Primary Crusher Baghouse Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-028c F ES-028d F ES-028d F ES-028d F ES-027 S ES-027 S ES-027 S ES-023a S ES-023b S ES-023d S ES-021d ES-024d ES-016b ES-016b ES-016b ES-016b ES-016b ES-016b ES-017d ES-017d ES-017d ES-018d ES-018d ES-018d ES-019d ES-019d T ES-019d T ES-022d T ES-022c T ES-022d T ES-021a T ES-021a T ES-021a T	Primary Jaw Crusher Sacrificial Conveyor Deparations Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Feed Conveyor #1 Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor #1 Sorting Screen Feed Feed Feed Feed Feed Feed Feed F	CD-028 CD-028 CD-023 CD-028 CD-028 CD-028 CD-029 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-016 CD-016	Primary Crusher Baghouse Primary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
Secondary Crushing C	Deparations Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #1 Secondary Crusher Feed Fine Secondary Crusher Feed Feed Feed Feed Feed Feed Feed Fe	CD-023 CD-020 CD-020 CD-020 CD-020 CD-020 CD-020 CD-018 CD-016 CD-016	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-027 S ES-027 S ES-028 S ES-0230 S ES-0250 S ES-031 S	Scalping Screen Feed Conveyor #1 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Conveyor #3 Scalping Screen Feed Eff Feeder Secondary Crusher Feed Bin Secondary Conse Crusher Secondary Cone Crusher Scotting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 IS Sorting Screen Feed Conveyor #2 Scring Screen Feed Conveyor #1 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Sorting Bypass Conveyor #2 Sorting Bypass Conveyor #1 Fell Feeder - Coarse Sorter #1/#2 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor	CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-020 CD-020 CD-020 CD-020 CD-020 CD-018 CD	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sypass Corveryor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-026 S ES-023a S ES-023a S ES-023b S ES-023b S ES-023d S ES-020b C ES-020b C ES-020b C ES-020b C ES-017a S ES-020b S ES-017a S ES-018b B ES-018b B ES-018b B ES-018b B ES-018b C ES-018b B ES-018b C ES-018b C ES-018b C ES-018b C ES-018b B ES-018b C ES-018b B ES-018b B ES-018b C ES-018b B ES-018b C ES-019b T ES-030 C ES-019b T ES-030 C ES-030 C ES-032a C ES-032a C ES-032a C ES-032a C ES-032a C ES-032a C ES-033a C ES-032a C ES-033a C	Scalping Screen Feed Conveyor #2 Scalping Screen Feed Conveyor #3 Scalping Screen Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Bin Secondary Crusher Feed Feeder Secondary Consecutive Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Sis Sorting Screen Feed Conveyor #2 Sorting Screen Feed Conveyor #1 Sorting String Screen Coarse Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter #1 Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorting Conter #1/#2 Fine Sorter #1/#2	CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-020 CD-020 CD-020 CD-020 CD-020 CD-018 CD	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sypass Corveryor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-023a S ES-023b S ES-023c S ES-023c S ES-023d S ES-025d S ES-017a S ES-017a S ES-017b S ES-017b S ES-017b S ES-018b S ES-018b S ES-018b S ES-018b S ES-018d S ES-018	Scalping Screen Feed Conveyor #3 Scalping Screen Scalping Screen Sceondary Crusher Feed Bin Secondary Crusher Belt Feeder Secondary Cone Crusher Secondary Cone Crusher Secondary Cone Crusher Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 ss Sorting Screen Feed Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Forting Spysas Conveyor Forting Spysas Conveyor #1 Sorting Bypass Conveyor #2 Sorting Streen Sorting Fine Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Selt Feeder - Fine Sorter #1/#2	CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-020 CD-020 CD-020 CD-020 CD-020 CD-018 CD-016 CD-016 CD-016 CD-016	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-023b S ES-023c S ES-023d S ES-025d S ES-018d S ES-019d S ES-019d S ES-019d S ES-019d S ES-022d S ES-022d S	Scalping Screen Secondary Crusher Feed Bin Secondary Crusher Belt Feeder Secondary Crusher Belt Feeder Secondary Cone Crusher Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor #2 Sorting Screen Coarse Sorting Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Selt Feeder - Fine Sorter #1/#2 Firetary Crushing Feed Conveyor Sorter Rejects Conveyor	CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-020 CD-020 CD-020 CD-020 CD-020 CD-020 CD-020 CD-018	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Syass Converyor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Bags Converyor Baghouse Ore Sorting Baghouse
ES-023a	Secondary Crusher Feed Bin Secondary Crusher Belt Feeder Secondary Crusher Belt Feeder Secondary Cone Crusher Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Sizing Screen Coarse Sorting Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Forting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter #1 Bin Belt Feeder - Coarse Sorter #1 Fine Sorting Conveyor Fine Sorting Coarse Sorter #1 Fine Sorting Coarse Sorter #1 Fine Sorter Bin Belt Feeder - Fine Sorter #1/#2	CD-023 CD-023 CD-023 CD-023 CD-023 CD-023 CD-020 CD-020 CD-020 CD-020 CD-018 CD-019	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sypass Corent Saghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-023e S ES-023f S ES-023f S ES-023f S ES-023g S Ore Sorting Operation ES-020a S ES-020a S ES-020b C ES-020c F ES-017a S ES-017a S ES-018b E ES-017b S ES-018b E ES-018b E ES-018b F ES-018d C ES-019d T ES-030 T ES-030 T ES-030 T ES-031 S ES-0322a T ES-0331 S ES-0331 S ES-0311 S ES-0311 S	Secondary Cone Crusher Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Screen Feed Conveyor #2 Is Sorting Sizing Screen Coarse Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Bell Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Sell Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Fine Sorter #1/#2	CD-023 CD-023 CD-023 CD-020 CD-020 CD-020 CD-020 CD-018	Secondary Crusher Baghouse Secondary Crusher Baghouse Secondary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sypass Converyor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-023f S ES-023g S ES-023g S ES-023g S ES-020g S ES-020b C ES-020b C ES-020b C ES-017a S ES-017b S ES-017b S ES-018b B ES-018b B ES-018b B ES-018b C ES-018	Sorting Screen Feed Conveyor #1 Sorting Screen Feed Conveyor #2 Is Sorting Sizing Screen Coarse Sorting Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter #1 Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Selt Feeder - Fine Sorter #1/#2	CD-023 CD-020 CD-020 CD-020 CD-020 CD-020 CD-018	Secondary Crusher Baghouse Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Corent Saghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
Section Sect	Sorting Screen Feed Conveyor #2 Is Sorting Sizing Screen Coarse Sorting Conveyor Sorting Bypass Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Fine Sorting #1/#2 Fine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Forting Feed Conveyor Sorter Rejects Conveyor	CD-023 CD-020 CD-020 CD-020 CD-018 CD-016	Secondary Crusher Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Orter Bypass Converyor Baghouse Ore Sorting Baghouse
Ore Sorting Operation ES-020a ES-020b C ES-020c ES-020c ES-020c ES-017a ES-017b S ES-018a C ES-018a ES-018a ES-018a ES-018b ES-018b ES-018b ES-018b ES-018c ES-018d ES	IS Sorting Sizing Screen Coarse Sorting Conveyor Fine Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Selt Feeder - Fine Sorter #1/#2	CD-020 CD-020 CD-020 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-016 CD-016	Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-020a S ES-020b C ES-020b C ES-020c F ES-020c F ES-017a S ES-017a S ES-017b S ES-018b B ES-018b B ES-018b B ES-018c F ES-018	Sorting Sizing Screen Coarse Sorting Conveyor ine Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter #1 Belt Feeder - Coarse Sorter #1/#2 ine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Terriany Cushing Feed Conveyor Sorter #1/#2 Feeder Fine Sorter #1/#2 Terriany Cushing Feed Conveyor Sorter Rejects Conveyor	CD-020 CD-020 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-016 CD-016 CD-016	Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-020b ES-020c ES-027a ES-017a ES-017b ES-017b ES-018a CS-018b ES-018b ES-018b ES-018b ES-018d ES-018d ES-019d ES-020d ES-022ab ES-022ab ES-031 ES-031	Coarse Sorting Conveyor Fine Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Delt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Fine Sorter #1/#2 Fortal	CD-020 CD-020 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-016 CD-016 CD-016	Sorter Sizing Screen Baghouse Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse Ore Sorting Baghouse
ES-020c F ES-017a S ES-017b S ES-018a C ES-018b E ES-018b F ES-018d F ES-018d F ES-018d F ES-018d F ES-019d F ES-019d F ES-019d F ES-020 T ES-022a T ES-031 S ES-021a T	Fine Sorting Conveyor Sorting Bypass Conveyor #1 Sorting Bypass Conveyor #2 Coarse Sorter Bin Bell Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Bell Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Fine Sorter #1/#2 Fine Sorter #1/#2 Fine Sorter #1/#2 Fine Sorter #1/#2 Sorter #1/#2 Fine Sorter #1/#2 Sorter #1/#2 Fine Sorter #1/#2 Sorter #1/#2 Sorter #1/#2 Sorter #1/#2 Sorter #1/#2 Fortagr Conveyor Sorter Rejects Conveyor	CD-020 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-018 CD-016 CD-016 CD-016	Sorter Sizing Screen Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-017b S ES-018a C ES-018b C ES-018b C ES-018c F ES-018d E ES-018d E ES-016b F ES-016b F ES-019 T ES-030 T Tertiary Crushing Ope ES-022a&b T ES-031 S ES-031 S ES-031 S	Sorting Bypass Conveyor #2 Coarse Sorter Bin Belt Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Fine Sorter #1/#2 Fine Sorter #1/#2 Fertlary Crushing Feed Conveyor Sorter Rejects Conveyor	CD-018 CD-018 CD-018 CD-018 CD-018 CD-016 CD-016	Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-018a C ES-018b E ES-018c F ES-018d E ES-018d C ES-019d C ES-019 T ES-030 T ES-030 T ES-022a&b T ES-022a T ES-031 S ES-031 S ES-031 S ES-031 S	Coarse Sorter Bin Bell Feeder - Coarse Sorter #1/#2 Fine Sorter Bin Bell Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Fine Sorter #1/#2 Firefaty Crushing Feed Conveyor Sorter Rejects Conveyor	CD-018 CD-018 CD-018 CD-018 CD-016 CD-016	Sorter Bypass Converyor Baghouse Sorter Bypass Converyor Baghouse Sorter Bypass Converyor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-018b ES-018c FS-018c FS-018d ES-018d ES-018d ES-018d ES-018d ES-019d TS-018d FS-019d TS-018d TS-018	Belt Feeder - Coarse Sorter #1/#2 "ine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 "ine Sorter #1/#2 Tertiary Cushing Feed Conveyor Sorter Rejects Conveyor	CD-018 CD-018 CD-018 CD-016 CD-016	Sorter Bypass Converyor Baghouse Sorter Bypass Converyor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-018c F ES-018d E ES-016d E ES-016b F ES-019 T ES-030 T ES-030 T ES-022a&b T ES-021 S ES-031 S ES-031 S ES-031 S	Fine Sorter Bin Belt Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Fine Sorter #1/#2 Fertiary Crushing Feed Conveyor Sorter Rejects Conveyor	CD-018 CD-018 CD-016 CD-016	Sorter Bypass Converyor Baghouse Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-018d E ES-016a C ES-016b F ES-019 T ES-030 S Tertiary Crushing Ope ES-022a8b T ES-022a T ES-021 S ES-021a T	Belt Feeder - Fine Sorter #1/#2 Coarse Sorter #1/#2 Ferfiany Crushing Feed Conveyor Sorter Rejects Conveyor	CD-018 CD-016 CD-016	Sorter Bypass Converyor Baghouse Ore Sorting Baghouse
ES-016a C ES-016b F ES-019 T ES-030 S Tertiary Crushing Ope ES-022a&b T ES-022c T ES-031 S ES-031 S ES-031 S ES-031 S	Coarse Sorter #1/#2 Fine Sorter #1/#2 Fertiary Crushing Feed Conveyor Sorter Rejects Conveyor	CD-016 CD-016	Ore Sorting Baghouse
ES-019 T ES-030 S Tertiary Crushing Ope ES-022a&b T ES-022c T ES-031 S ES-021a T	Tertiary Crushing Feed Conveyor Sorter Rejects Conveyor		Oro Sorting Raghouse
ES-030 S Tertiary Crushing Ope ES-022a&b T ES-022c T ES-031 S ES-021a T	Sorter Rejects Conveyor	CD 016	Ore Sorting Baghouse
Tertiary Crushing Ope ES-022a&b T ES-022c T ES-031 S ES-021a T			Ore Sorting Baghouse
ES-022a&b T ES-022c T ES-031 S ES-021a T	erations	CD-016	Ore Sorting Baghouse
ES-022c T ES-031 S ES-021a T	Tertiary Crusher Sizing Screen #1/#2	CD-022	Tertiary Sizing Screen Baghouse
ES-031 S ES-021a T	Tertiary Crushing Feed Bin Conveyor	CD-022	Tertiary Sizing Screen Baghouse Tertiary Sizing Screen Baghouse
	Stockpile Feed Conveyor #1	CD-022	Tertiary Sizing Screen Baghouse
	Tertiary Crusher Feed Bin	CD-021	Tertiary Crusher Baghouse
	Belt Feeder - Tertiary Crusher #1/#2	CD-021	Tertiary Crusher Baghouse
	Tertiary Cone Crusher #1/#2	CD-021	Tertiary Crusher Baghouse
	Tertiary Crusher Product Conveyor Stockpile Feed Conveyor #2	CD-021	Tertiary Crusher Baghouse
	Stockpile Feed Conveyor #2 Stockpile Stacking Conveyor	CD-040 CD-040	Stockpile Sizing Screen Baghouse Stockpile Sizing Screen Baghouse
	Plant Feed Stockpile	CD-040	Stockpile Sizing Screen Baghouse
	Plant Feed Belt Feeder #1/#2	CD-040	Stockpile Sizing Screen Baghouse
ES-040e S	Stockpile Discharge Conveyor	CD-040	Stockpile Sizing Screen Baghouse
	DMS Feed Conveyor	CD-040	Stockpile Sizing Screen Baghouse
Concentrator Operatio			
	DMS Feed Bin Belt Feeder - DMS #1	CD-039 CD-039	DMS Dryer Baghouse DMS Dryer Baghouse
	Belt Feeder - DMS #1	CD-039	DMS Dryer Baghouse DMS Dryer Baghouse
	DMS Dryer	CD-039	DMS Dryer Baghouse
ES-042	Dryer Discharge Conveyor #1	CD-043	DMS and Mag Seg Baghouse
ES-047 D	Dryer Discharge Conveyor #2	CD-043	DMS and Mag Seg Baghouse
	Dryer Discharge Conveyor #3	CD-043	DMS and Mag Seg Baghouse
	Dryer Discharge Conveyor #4	CD-043	DMS and Mag Seg Baghouse
	Magnetic Feed Bin	CD-043	DMS and Mag Seg Baghouse
	LIMS Vibrating Feeder #1/#2 LIMS Coarse Drums #1/#2	CD-043 CD-043	DMS and Mag Seg Baghouse DMS and Mag Seg Baghouse
	Coarse High Intensity Magnetic Separators	CD-043	DMS and Mag Seg Baghouse DMS and Mag Seg Baghouse
	Coarse Magnetics Conveyor	CD-043	DMS and Mag Seg Baghouse
ES-043g C	Coarse Concentrate Conveyor #1	CD-043	DMS and Mag Seg Baghouse
	Sorter Rejects Bin	CD-024	Sorter Rejects Bin Vent Filter
	DMS Rejects Bin (Coarse Tails Bin)	CD-025	DMS Reject Bin Vent Filter
	Concentrate Load Out Bin Concentrate Load Out Bin	CD-013 CD-012	Concentrate Load Out Bin Vent Filter Concentrate Load Out Bin Vent Filter
	Concentrate Load Out Bin Concentrate Truck Load Out Belt Feeder	N/A	Concentrate Load Out Bill Verit Filter
	Truck Load Out Stacker Conveyor	N/A	
	Rail Load Out Conveyor #1	N/A	
ES-009 F	Rail Load Out Conveyor #2	N/A	
	Rail Load Out Conveyor #3	N/A	
	Rail Load Out Conveyor #4	N/A	Rail Load Out Bin Vent Filter
	Rail Load Out Station Feed Bin Methyl Isobutyl Carbinol Usage	CD-005 N/A	raii Load Out Bin Vent Filter
LO-001 N	vicinyi isobutyi Carbinoi Osage	I WA	
	Existing Permitted Equipment To B	e MODIFIED R	v This Application
	Existing Formitted Equipment 10 B		J Application
			
	Equipment To Be DELE	TED By This An	plication
	=quipment TO Be DELL		

112(r) APPLICABILITY INFORMATION							
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases" - Section 112(r) of the Federal Clean Air Act?							
If No, please specify in detail how your facility avoided applicability:		The facility does not store any regulated chemicals in applicable quantities.					
If your facility is Subject to 112(r), please complete the following: A. Have you already submitted a Risk Management Plan (RMP) to EPA Pursuant to 40 CFR Part 68.10 or Part 68.150? Yes No Specify required RMP submittal date: If submitted, RMP submittal date: B. Are you using administrative controls to subject your facility to a lesser 112(r) program standard? Yes No If yes, please specify: C. List the processes subject to 112(r) at your facility.							
PROCESS DESCRIPTION	PROCESS LEVEL (1, 2, or 3)	HAZARDOUS CHEMICAL		INTENDED DRY (LBS)			

Emission Source B and C Forms

Primary Crushing Operations

ES-029 ES-028a - ES-028d CD-028

FORM B

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Division	n of Air Quality	/ - Application	n for Air Permit to	Construct/Ope	erate		В
THEOLON COURSE PEOPLETICAL			EMISSION SOU	RCE ID NO:	ES-029			
ROM Truck Unloading Area		CONTROL DEVI		N/A				
OPERATING SCENARIO 1 OF 1				EMISSION POIN	` '		EP-029	
DESCRIBE IN DETAILTHE EMISSION SO Truck unloading area. See PFD Figure 3 in		(ATTACH FLOW	V DIAGRAM):		. ,	. ,		
APPROPRIATE FORM B1-B9 ON THE F	OLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	n B1)	Woodwork	king (Form B4	.)	Manuf. c	of chemicals/coa	atings/inks (Fo	rm B7)
		Coating/fir	nishing/printing (Form B5)					
Liquid storage tanks (Form B3)		Storage silos/bins (Form I		om B6) Other (Form B9)				
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	1			
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	-	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT ((%): DEC-FEB	25 MAR-M	MAY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SC	OURCE		
		SOURCE OF	EXPEC.	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.6889	2.0127	0.6889	3.0176	0.6889	3.0176
PARTICULATE MATTER<10 MICRONS (PM	10)	AP-42	0.3259	0.9520	0.3259	1.4272	0.3259	1.4272
PARTICULATE MATTER<2.5 MICRONS (PM	1 _{2.5})	AP-42	0.0493	0.1442	0.0493	0.2161	0.0493	0.2161
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC	C)							
LEAD								
OTHER								
HAZAR	DOUS AIR POL	LUTANT EN	MISSIONS I	INFORMATIOI	N FOR THIS S	SOURCE		
		SOURCE OF EXPECTED ACTUAL		TED ACTUAL	POTENTIAL EMISSIONS		EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOX	(IC AIR POLLU	TANT EMISS	SIONS INF	ORMATION FO	OR THIS SOL	IRCE		
		SOURCE OF EMISSION	EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS					
TOXIC AIR POLLUTANT CAS NO.		FACTOR lb/hr		lb/hr	hr Ib/day		lb/yr	

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B9

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	ate	B9	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-029		
ROM Truck Unloading Area		CONTROL DEVICE ID NO(S):			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-029			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Truck unloading area. See PFD Figure 3 in Section 3.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(JNIT/HR)	
Ore	tons	556	N/A		
MATERIALS ENTERING PROCESS - BATCH OPERATION	N	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)	
	ļ				
	<u> </u>				
	<u> </u>				
	<u> </u>				
	<u> </u>				
MAXIMUM DESIGN (BATCHES / HOUR):			_		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):			
FUEL USED: N/A	TOTAL MAXI	KIMUM FIRING RATE (MILLION BTU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	JESTED CAPACITY ANNUAL FUEL USE: N/A			
COMMENTS:					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	- Application	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-028a		
Apron Feeder Conveyor				CONTROL DEVI		CD-028		
OPERATING SCENARIO 1 OF 1				EMISSION POIN	. ,		EP-028	
DESCRIBE IN DETAILTHE EMISSION SO Primary crushing operations with dust pickt		•						
APPROPRIATE FORM B1-B9 ON THE F	OLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	n B1)	Woodwork	king (Form B4	.)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Forn	n B2)	Coating/fir	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		•
Liquid storage tanks (Form B3)		Storage si	los/bins (Forn	n B6)	Other (F	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	1			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT	(%): DEC-FEB	25 MAR-W	IAY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMIS	SSIONS IN	FORMATION	FOR THIS SC	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER<10 MICRONS (PM	10)	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM	1 _{2.5})	AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC	C)							
LEAD								
OTHER								
HAZAR	DOUS AIR POL	LUTANT EN	IISSIONS I	INFORMATIOI	N FOR THIS S	SOURCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOX	(IC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	IRCE		
		SOURCE OF EMISSION						IONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR			lb/d	lay	lb	o/yr

	- Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-028a	
Apron Feeder Conveyor		CONTROL DEVICE ID NO(S):	CD-028	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-028	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Primary crushing operations with dust pickups. See PFD Figure 3 in Se	ection 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	CESS	MAX. DESIGN	REQUESTED	CAPACITY
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Ore	tons	556	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERAT		MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	T			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	(R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-028b		•
Vibrating Grizzly				CONTROL DEV		CD-028		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-028	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		, ,	7		
Primary crushing operations with dust pickup								
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	United (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
	ISPS (SUBPARTS	,			(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9	<u> </u>	25 MAR-N		JUN-AUG		SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	<u>SSIONS IN</u>	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER<10 MICRONS (PM ₁₀	,	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM ₂	.5)	AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)	1							
LEAD								
OTHER	OUO AID DOI	LUTANTE	MOCIONO	NEODIAATIO	V FOR TWO	OUDOE		
HAZARL	OUS AIR POL	1			T FUR I HIS S			
		SOURCE OF			POTENTIAL EMISSION			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOXI	C AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE	<u> </u>	<u> </u>
	<u> </u>	I						2112
		SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITAT EMISSION					DLS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	o/yr
								-

EMISSION SOURCE ID NO:					
	ES-028b				
CONTROL DEVICE ID NO(S):	CONTROL DEVICE ID NO(S): CD-028				
EMISSION POINT (STACK) ID N	NO(S): EP-028				
MAX. DESIGN	REQUESTED CAPACITY				
	LIMITATION(UNIT/HR)				
` ´	N/A				
MAX. DESIGN	REQUESTED CAPACITY				
CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)				
ES/YR):					
STED CAPACITY ANNUAL FUEL USE					
	MAX. DESIGN S CAPACITY (UNIT/HR) S 556 MAX. DESIGN				

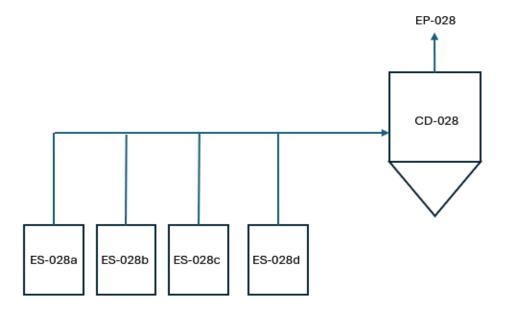
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-028c		•
Primary Jaw Crusher				CONTROL DEV		CD-028		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-028	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	(- /	- ()		
Primary crushing operations with dust pickuր								
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	U Other (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
	ISPS (SUBPARTS	,			(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9		25 MAR-N		JUN-AUG		SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	<u>SSIONS IN</u>	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0175	0.0512	0.3504	1.5348	0.0175	0.0767
PARTICULATE MATTER<10 MICRONS (PM ₁₀	,	AP-42	0.0079	0.0230	0.1577	0.6906	0.0079	0.0345
PARTICULATE MATTER<2.5 MICRONS (PM ₂	.5)	AP-42	0.0012	0.0035	0.0237	0.1036	0.0012	0.0052
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC))							
LEAD								
OTHER	NOUS AID DOL	LUTANTE	MICCIONIC	NEODMATIO	V FOR THE	COURCE		<u> </u>
HAZARL	OOUS AIR POL	1			V FUR I HIS S			
		SOURCE OF			POTENTIAL EMISSIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT	1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOXI	C AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE	<u> </u>	<u> </u>
	1	I						2112
		SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITA EMISSION					LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr
						-		-
				·				

	- Application f	for Air Permit to Construct/Opera	ite	ВЭ		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-028c				
Primary Jaw Crusher		CONTROL DEVICE ID NO(S): CD-028				
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	IO(S): EP-028			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):						
Primary crushing operations with dust pickups. See PFD Figure 3 in Sec	ction 3.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	CESS	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(L			
Ore	tons	292	N/A	· · · · · · · · · · · · · · · · · · ·		
-	1					
	+	 				
	+	 				
	+	 				
	1	1				
	†	1				
	1			, 		
MATERIALS ENTERING PROCESS - BATCH OPERATI	ION	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)		
		<u> </u>				
		<u> </u>				
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	′R):				
FUEL USED: N/A	TOTAL MAX	IMUM FIRING RATE (MILLION BT	U/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTE	D CAPACITY ANNUAL FUEL USE:	: N/A			
COMMENTS:						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-028d		
Sacrificial Conveyor				CONTROL DEV	ICE ID NO(S):	CD-028		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-028	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		, ,	7		
Primary crushing operations with dust pickup	,	•	•					
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	United (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
	ISPS (SUBPARTS	,			(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9	<u> </u>	25 MAR-N		JUN-AUG		SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	<u>SSIONS IN</u>	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER<10 MICRONS (PM ₁₀	,	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM ₂	.5)	AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)	1							
LEAD								
OTHER	OUO AID DOI	LUTANTE	MOCIONO	NEODMATIO	V FOR TWO	OUDOE		
HAZARL	OUS AIR POL	1			T FUR I HIS S			
		SOURCE OF			POTENTIAL EMISSIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOXI	C AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE	<u> </u>	<u> </u>
	<u> </u>	I						2112
		SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITA EMISSION					DLS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	o/yr
								-


	- Application for	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-028d	
Sacrificial Conveyor		CONTROL DEVICE ID NO(S):	CD-028	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID 1	NO(S): EP-028	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Primary crushing operations with dust pickups. See PFD Figure 3 in Sec	ction 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Ore	tons	556	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
	<u> </u>			
	+			
	+			
	+			
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R)·		
FUEL USED: N/A	,	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Divis	sion of Air Quality -	Application	for Air Permit to	Constr	uct/Operate				C1
CONTROL DEVICE ID NO: CD-028	CONTROLS EMISSI	ONS FROM	WHICH EMISSI	ON SOU	RCE ID NO(S	S): ES-02	8a through ES	-028d Primary Crusher B	uilding
EMISSION POINT (STACK) ID NO(S): EP-028	POSITION IN SERIE	S OF CONT	ROLS		NO.	1 OF	1 UNITS		
OPERATING SCENARIO:									
1 OF 1		P.E. SEAL F	REQUIRED (PER	2q .011	2)?	YES		NO	
DESCRIBE CONTROL SYSTEM:									
Schust 3 module, size 1715, Model 168, Pulse Jei A solid state timer provides sequential pulsing of See control device PFD on the next page.		in a single	configuration						
POLLUTANTS COLLECTED:	-	РМ	PM ₁₀	_	PM _{2.5}				
BEFORE CONTROL EMISSION RATE (LB/HR):		0.58	0.23	_	0.04				
CAPTURE EFFICIENCY:		95	% 95	%	95	%	%		
CONTROL DEVICE EFFICIENCY:		99	% 99	%	99	%	%		
CORRESPONDING OVERALL EFFICIENCY:		94.05	% 94.05	%	94.05	%	%		
EFFICIENCY DETERMINATION CODE:		1	1	_	1				
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.006	0.002	_	0.0003				
PRESSURE DROP (IN H ₂ 0): MIN: -10 MAX: -20		✓ YES	NO						
BULK PARTICLE DENSITY (LB/FT³): 90			PERATURE (°F):			MAX 115			
	_		EMPERATURE (°	-		MAX 115			
INLET AIR FLOW RATE (ACFM): 104,000			ERATING TEMP			(INT.): 400			
	ER COMPARTMENT		2), 22		TH OF BAG				
	E AREA PER CART). 22	DIAIV	ETER OF BA	AG (IN.): 6			
	AIR TO CLOTH RAT FORCED/POSITIVE		FILTER I	AATEDIA	и. П	WOVEN	✓ FELTED		
DESCRIBE CLEANING PROCEDURES:	FORCED/FOSITIVE		FILTER	MIENI	L	WOVEN		E DISTRIBUTION	
	SONIC				SIZE	WEIGHT 9		CUMULATIVE	
_ =	SIMPLE BAG COLLA	APSE		(N	ICRONS)	OF TOTA		%	
	RING BAG COLLAP				0-1	0		0	
OTHER:		-			1-10	58		58	
DESCRIBE INCOMING AIR STREAM: Fan draws air stream		and open ar	eas into the unit		10-25	42		100	
which then intermittently purges to return material back onto t	he cpnveyor.				25-50	0		100	
					50-100	0		100	
					>100	0		100	
						•		TOTAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWING	THE RELATIONSHI	P OF THE C	CONTROL DEVIC	E TO IT	S EMISSION	SOURCE(S):			
COMMENTS:									

Primary Crusher Baghouse (CD-028)

Secondary Crushing Operations

ES-023a - ES-023g ES-026 and ES-027 CD-023

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-027		
Scalping Screen Feed Conveyor #1				CONTROL DEV		CD-023		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO		EP-023	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	(- /	- ()		
Scalping screen feed conveyor with dust pic								
E APPROPRIATE FORM B1-B9 ON THE FO	N I OWING PAGE	61.						
Coal,wood,oil, gas, other burner (Form		-	king (Form B4)	Manuf o	f chemicals/coa	atings/inks (Fo	rm R7)
Int.combustion engine/generator (Form	•	Ē	nishing/printin	,	=	ion (Form B8)	atings/inks (i o	iiii <i>67)</i>
Liquid storage tanks (Form B3)	62)	_ 0	ilos/bins (Forn	,	Other (Fo			
START CONSTRUCTION DATE: TBD		_ Clorage c	`	FACTURED: TBD	,	5111 20)		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:			IVND	
	JODO (OLIDDADTO	23), 000	EXPECTED			DAT/WK 32 W	NIK	
IS THIS SOURCE SUBJECT TO? UNITED IN 18 PERCENTAGE ANNUAL THROUGHPUT (NSPS (SUBPARTS	25 MAR-N	//AY 25	JUN-AUG	(SUBPARTS?):_ 25	SEP-NOV 25		
	RIA AIR POLL							
CRITE	NIA AIN FULL	T			TOK IIIIS SU			
		SOURCE OF		TED ACTUAL		POTENTIAL	1	
AID DOLL HTANK EMITTED		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONTI	1		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER 10 MICRONS (PM1)	,	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER	20110 415 501		MODIONO	NEODIA TIO	V FOR THE C	2011205		
HAZARL	DOUS AIR POL	1			V FUR THIS S			
		SOURCE OF	EXPECTED ACTUAL		POTENTIAL EMISSIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TO 1/								
TOXI	C AIR POLLU	IANI EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF EMISSION	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	Ib	o/yr

	lity - Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-027	
Scalping Screen Feed Conveyor #1		CONTROL DEVICE ID NO(S):	CD-023	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-023	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM Scalping screen feed conveyor with dust pickups. See PFD Figure 3	•			
MATERIALS ENTERING PROCESS - CONTINUOUS PR	POCESS	MAX. DESIGN	REQUESTED	CADACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Ore	tons	556	N/A	· · · · · · · · · · · · · · · · · · ·
Ole	toris	550	IN/A	
	- 			
MATERIALS ENTERING PROCESS - BATCH OPERA	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	
1112			(,,
MAXIMUM DESIGN (BATCHES / HOUR):	<u> </u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	,	MUM FIRING RATE (MILLION B	TII/HR\· N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	1	CAPACITY ANNUAL FUEL USE		
COMMENTS:	1.12020122	S / COLL / HATO/IE I OLE OOL		
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-026		
Scalping Screen Feed Conveyor #2				CONTROL DEVI		CD-023		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-023	
DESCRIBE IN DETAILTHE EMISSION SO	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	(- /	- ()		
Scalping screen feed conveyor with dust pic								
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printing	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Other (Formula)	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	i?): 000	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	MAY 25	JUN-AUG	25 8	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTI		1	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER<10 MICRONS (PM ₁	٥)	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM		AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)	2.37							
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER								
	OOUS AIR POL	LUTANT EN	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF	1	EXPECTED ACTUAL POTENTIAL EMISSION			EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTI		1	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
			-	.,				
TOX	IC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	ΓV	DECTED ACTUAL	EMICCIONE AE	TER CONTRO	L C / LIMITATI	ONC
		SOURCE OF EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITAT EMISSION						ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	Ib	o/yr
						-		

REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-026	
Scalping Screen Feed Conveyor #2		CONTROL DEVICE ID NO(S):	CD-023	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-023	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Scalping screen feed conveyor with dust pickups. See PFD Figure 3 in S	Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	FSS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Ore	tons	556	N/A	51117711117
OIE	toris	330	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-023a		
Scalping Screen Feed Conveyor #3				CONTROL DEVI	CE ID NO(S):	CD-023		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-023	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Secondary crushing operations with dust pickups	,							
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		-	rking (Form B4) Manuf. of chemicals/coatings/inks (For					m B7)
Int.combustion engine/generator (Form B2)		Ē	nishing/printin	,	=	on (Form B8)	9=/ (*	,
Liquid storage tanks (Form B3)		_ 0	ilos/bins (Form	,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	,	•		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): I		25 MAR-N	//AY 25	JUN-AUG		SEP-NOV 25		
				FORMATION I				
0.0.2.0.	7	SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER (1 M) PARTICULATE MATTER (1 M) PARTICULATE MATTER (1 M)		AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM ₁₀)		AP-42	0.0013	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)		A1 -42	0.0002	0.0000	0.0030	0.0100	0.0002	0.0000
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	MISSIONS I	NEORMATION	I FOR THIS S	CURCE	<u> </u>	
MAZANDOO	I AIN I OL		EMISSIONS INFORMATION FOR THIS SOURCE OF EXPECTED ACTUAL POTENTIAL EMISSI			MICCIONIC		
		SOURCE OF						
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTR	1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	+	<u> </u>	-					
	<u> </u>	-	-					
	 	1						
	+	<u> </u>	-					
	 	1						
	 	1						
TOVIC	ID DOLLIE	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLI	DCE.		
TOXIC	T POLLO	T	T T	JRIVIA I ION FO	JK THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	15/4		I 15	h
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/d	ау	ID	/yr
	+	<u> </u>	-					
		-			-			
	1	1	-					
	 	1	 		 			
	1	-	 		 			
	1	1	1		<u> </u>		<u> </u>	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-023a	
Scalping Screen Feed Conveyor #3		CONTROL DEVICE ID NO(S):	CD-023	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-023	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Secondary crushing operations with dust pickups. See PFD Figure 3 in S	Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	JNIT/HR)
Ore	tons	556	N/A	
	 			
	 			
	 			
	<u> </u>			
			_	
	<u> </u>			
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
	<u> </u>			
	<u> </u>			
	<u> </u>			
	 			
	<u> </u>			
	 			
	 			
	<u> </u>			
MAXIMUM DESIGN (BATCHES / HOUR):	T _{DATOUES/V}	(D)		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	•	ΕΙ.// ID.\. ΝΙ/Δ	
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		MUM FIRING RATE (MILLION BT CAPACITY ANNUAL FUEL USE		
COMMENTS:	NEQUEUTE	OAFAOITT ANNOALT OLL GOL	IV/A	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-023b					
Scalping Screen				CONTROL DEV		CD-023			
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-023		
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•		- ()			
Secondary crushing operations with dust pic		•							
E APPROPRIATE FORM B1-B9 ON THE FO	ALLOWING BACE	C/.							
Coal,wood,oil, gas, other burner (Form		-	king (Form B4	`	Manuf o	f chemicals/coa	atings/inks (Eq	rm P7\	
	,	Ē	0 (,	=		illigs/liks (Foi	ШБ7)	
☐ Int.combustion engine/generator (Form ☐ Liquid storage tanks (Form B3)	D2)		nishing/printin ilos/bins (Forn	• ,	Other (Fo	ion (Form B8)			
		_ Otorage s	`		,	51111 159)			
START CONSTRUCTION DATE: TBD			1	FACTURED: TBC		DAY/A/IZ FO M	WWD.		
MANUFACTURER / MODEL NO.: TBD IS THIS SOURCE SUBJECT TO?	IODO (OLIDDADEO	201. 000	EXPECTED	OP. SCHEDULE:		DAY/WK 52 W	MIR		
IS THIS SOURCE SUBJECT TO? PERCENTAGE ANNUAL THROUGHPUT (9)	ISPS (SUBPARTS	,	//AY 25	JUN-AUG	(SUBPARTS?):_	CED NOV. 25			
	RIA AIR POLL	25 MAR-N				SEP-NOV 25			
CRITE	NIA AIR PULL	T			TOK THIS SU				
SOUR				TED ACTUAL		POTENTIAL	1		
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONT	1		ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0612	0.1787	1.2232	5.3576	0.0612	0.2679	
PARTICULATE MATTER<10 MICRONS (PM ₁₀	,	AP-42	0.0206	0.0601	0.4114	1.8021	0.0206	0.0901	
PARTICULATE MATTER<2.5 MICRONS (PM ₂	.5)	AP-42	0.0031	0.0090	0.0617	0.2703	0.0031	0.0135	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)	1								
LEAD									
OTHER		<u> </u>							
HAZARL	OUS AIR POL	1			V FOR THIS S				
		SOURCE OF	EXPECTED ACTUAL		POTENTIAL EMISSION				
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
							<u> </u>		
							<u> </u>		
		<u> </u>	<u> </u>			<u> </u>	<u></u>	<u> </u>	
TOXI	C AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE			
		SOURCE OF EMISSION	EX	PECTED ACTUA	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr	
		1							
							<u> </u>		

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application for	or Air Permit to Construct/Oper	ate	B9	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-023b		
Scalping Screen		CONTROL DEVICE ID NO(S):	CD-023		
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-023		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Secondary crushing operations with dust pickups. See PFD Figure 3 in S	ection 3.				
		T 1			
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	-	MAX. DESIGN	REQUESTED		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	· · · · · · · · · · · · · · · · · · ·	
Ore	tons	556	N/A		
	 				
	 		·		
-			<u> </u>		
MATERIALS ENTERING PROCESS - BATCH OPERATIO	ON	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)	
	<u> </u>				
					
	<u></u>				
MAXIMUM DESIGN (BATCHES / HOUR):	т				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	,			
		MUM FIRING RATE (MILLION B			
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE	E: N/A		

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-023c			
Secondary Crusher Feed Bin				CONTROL DEVI		CD-023			
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-023		
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /				
Secondary crushing operations with dust pickups	,								
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):							
Coal,wood,oil, gas, other burner (Form B1)			king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)	
Int.combustion engine/generator (Form B2)		=	nishing/printing	,		on (Form B8)	3 . (,	
Liquid storage tanks (Form B3)			ilos/bins (Form	• • •	Other (Fo	,			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	,	•			
MANUFACTURER / MODEL NO.: TBD			EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 WK/YR						
	S (SUBPARTS	(2). 000			(SUBPARTS?):				
PERCENTAGE ANNUAL THROUGHPUT (%): I		25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25			
				FORMATION I					
0.0.2.0.	7	SOURCE OF		ED ACTUAL	T	POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0248	0.0724	0.4956	2.1709	0.0248	0.1085	
PARTICULATE MATTER (1 M) PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		AP-42	0.0240	0.0724	0.4930	1.0268	0.0240	0.0513	
PARTICULATE MATTER<.5 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0018	0.0052	0.0355	0.1555	0.00117	0.0078	
SULFUR DIOXIDE (SO2)		A1 -42	0.0010	0.0032	0.0333	0.1555	0.0010	0.0076	
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
	IS AIR POI	I IITANT FI	MISSIONS I	NEORMATION	I FOR THIS S	CURCE	<u> </u>	<u> </u>	
MAZANDOO	I AIN I OL		MISSIONS INFORMATION FOR THIS SOURCE EXPECTED ACTUAL POTENTIAL EMISSIONS						
		SOURCE OF							
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)		1		ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
	+	<u> </u>	-						
	<u> </u>	-	-						
	<u> </u>	1							
	+	<u> </u>	-						
	<u> </u>	1							
	<u> </u>	1							
TOVIC	ID DOLLIE	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLI	DCE.			
TOXIC	T POLLO	Ī		JRIVIA I ION FO	JK THIS SOU	RCE			
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		Ile /le m	15/4		I	h	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/d	ау	ID	/yr	
	+	<u> </u>	-						
		-							
	1	 	-						
	 	1	 		 				
	1		 		 				
		1			 				
	1	1	1		<u> </u>				

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divisi	ion of Air Quality - Ap	plication	for Air Pe	rmit to Const	truct/O _l	perate			B6
EMISSION SOURCE DESCRIP	PTION:			EM	ISSION SOUF	RCE ID	NO:	ES-023	3	
Secondary Crusher Feed Bin				СО	NTROL DEVI	CE ID N	NO(S):	CD-023		
OPERATING SCENARIO:	1 OF 1			EM	ISSION POIN	IT(STAC	CK) ID NO	O(S):	EP-023	
DESCRIBE IN DETAIL THE PR Ore from the primary crusher is			vith dust	oickups. Se	e PFD Figure	3 in Se	ection 3.			
MATERIAL STORED: Ore				DENSITY (OF MATERIAL	L (LB/F	T3): 156			
CAPACITY	CUBIC FEET: 1,000			TONS: 75		,	,			
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR) LENGTH: 20 WIDTH: 20			20	HEIGHT	T: 30		
ANNUAL PRODUCT THRO	•		2,337,16		XIMUM DESI					
PNEUMATICALLY FI		MECHANIC							FROM	
BLOWER COMPRESSOR OTHER:	COMPRESSOR BELT CONVEYOR						RAILCAR TRUCK STORAG OTHER:	E PILE	am Process L	Jnits
NO. FILL TUBES:		OTTIER.					O II I LI II.	Орошос		<i>311110</i>
MAXIMUM ACFM:										
MATERIAL IS UNLOADED TO:	-	M SILO? Conveyor								
MAXIMUM DESIGN FILLING R	ATE OF MATERIAL (T	ONS/HR): 400								
MAXIMUM DESIGN UNLOADIN	·	· · · · · · · · · · · · · · · · · · ·								
COMMENTS:										

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit t	o Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-023d					
Secondary Crusher Belt Feeder				CONTROL DEV		CD-023			
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-023		
DESCRIBE IN DETAILTHE EMISSION SO	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	(- /	- ()			
Secondary crushing operations with dust pic			•						
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form	B2)	[Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Uther (Fo	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)				
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR		
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	3?): 000		NESHAP	(SUBPARTS?):_				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25			
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE			
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS		
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0028	0.0082	0.0560	0.2453	0.0028	0.0123	
PARTICULATE MATTER<10 MICRONS (PM1	0)	AP-42	0.0009	0.0027	0.0184	0.0806	0.0009	0.0040	
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	0.0001	0.0004	0.0028	0.0121	0.0001	0.0006	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD									
OTHER									
HAZARI	DOUS AIR POL	LUTANT EI	MISSIONS I	<u>INFORMATIO</u>	N FOR THIS S	SOURCE			
		SOURCE OF	EXPECTED ACTUAL			EMISSIONS			
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
							<u> </u>		
							<u> </u>		
									
							<u> </u>		
TOV	IC AID DOLL III	TANT CMIC	CIONC INF	ODMATION F		IDOE			
TUX	IC AIR POLLU		T	URIVIA I ION FO	UK THIS SOU	RUE			
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO)LS / LIMITATI	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	lav	II.	o/yr	
TOXIC AIR FOLLOTAIN	CAS NO.	TACTOR		ID/III	ID/C	iay	11.	<i>л</i> у і	
							†		
					+		+		
			<u> </u>		1				
		1			1				
			<u> </u>		1				
					1				
			1		1				

REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-023d	
Secondary Crusher Belt Feeder		CONTROL DEVICE ID NO(S):	CD-023	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-023	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Secondary crushing operations with dust pickups. See PFD Figure 3 in S	Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CADACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
				JNII/HK)
Ore	tons	400	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION	NC	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
HANGE HANDS (NATOURS)				
MAXIMUM DESIGN (BATCHES / HOUR):	(DATOUES:	D)		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	,		
FUEL USED: N/A	1	MUM FIRING RATE (MILLION B	•	
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A	
CONNIVENTO.				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	o Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-023e					
Secondary Cone Crusher				CONTROL DEV		CD-023			
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-023		
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	(-)	- ()			
Secondary crushing operations with dust pic									
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4	.)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form	B2)	[Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)		[Storage s	ilos/bins (Forn	n B6)	Uther (Fo	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR		
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	?): 000		NESHAP	(SUBPARTS?):_				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	MAY 25	JUN-AUG	25	SEP-NOV 25			
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SC	URCE			
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS		
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0240	0.0701	0.4800	2.1024	0.0240	0.1051	
PARTICULATE MATTER<10 MICRONS (PM1)	0)	AP-42	0.0108	0.0316	0.2160	0.9461	0.0108	0.0473	
PARTICULATE MATTER<2.5 MICRONS (PM2	2.5)	AP-42	0.0016	0.0047	0.0324	0.1419	0.0016	0.0071	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD									
OTHER									
HAZARI	DOUS AIR POL	LUTANT EI	MISSIONS I	INFORMATIO	N FOR THIS S	OURCE			
		SOURCE OF	F EXPECTED ACTUAL		POTENTIAL EMISSIONS				
		EMISSION (AFTER CONTRO		NTROLS / LIMITS)	S / LIMITS) (BEFORE CONTROLS / LIMITS) (AFTE		(AFTER CONT	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
		<u> </u>				L		<u> </u>	
TOXI	IC AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE			
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
		EMISSION			1				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb.	o/yr	
		-	}						
		 							
		-			1				
		<u> </u>	<u> </u>		<u> </u>				

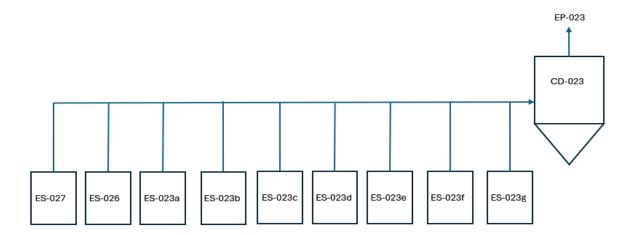
EMISSION SOURCE DESCRIPTION: Secondary Cone Crusher OPERATING SCENARIO: 1 OF 1 DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA			ES-023e	
OPERATING SCENARIO: 1 OF 1		CONTROL DEVICE ID NO(0)		
		CONTROL DEVICE ID NO(S): (CD-023	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRA		EMISSION POINT (STACK) ID N	NO(S): EP-023	
Secondary crushing operations with dust pickups. See PFD Figure				
MATERIALS ENTERING PROCESS - CONTINUOUS F		MAX. DESIGN	REQUESTED	
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	JNIT/HR)	
Ore	tons	400	N/A	
		+		
		+		
MATERIALS ENTERING PROCESS - BATCH OPE	RATION	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
		+		
,	TO A TO LIFE ON			
		,		
COMMENTS:	REQUESTE	J CAPACITT ANNUAL FUEL USL	: N/A	
IAXIMUM DESIGN (BATCHES / HOUR): EQUESTED LIMITATION (BATCHES / HOUR): UEL USED: N/A IAX. CAPACITY HOURLY FUEL USE: N/A OMMENTS:		/R): IMUM FIRING RATE (MILLION BT D CAPACITY ANNUAL FUEL USE		

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-023f					
Sorting Screen Feed Conveyor #1				CONTROL DEV		CD-023			
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-023		
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /	- ()			
Secondary crushing operations with dust pic		•							
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form	B2)	[Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)		[Storage s	ilos/bins (Forn	n B6)	Uther (Fo	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR		
IS THIS SOURCE SUBJECT TO?	ISPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_				
PERCENTAGE ANNUAL THROUGHPUT (9	%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25 \$	SEP-NOV 25			
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE			
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS		
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170	
PARTICULATE MATTER<10 MICRONS (PM10	₀)	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056	
PARTICULATE MATTER<2.5 MICRONS (PM2	1.5)	AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD									
OTHER									
HAZARI	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE			
		SOURCE OF	OF EXPECTED ACTUAL		POTENTIAL EMISSIONS				
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
		<u> </u>				L		<u> </u>	
TOXI	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE			
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
TOYIO AIR ROLLUTANT	040.110	EMISSION		U- //	11.7.1		l "	. h	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	II.	o/yr	
		1	-						
					1				
		1							
		1							
		 	 						
		l .	1		1		l		

	- Application	or Air Permit to Construct/Opera	ite	Da			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-023f					
Sorting Screen Feed Conveyor #1		CONTROL DEVICE ID NO(S): CD-023					
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-023					
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):							
Secondary crushing operations with dust pickups. See PFD Figure 3 in	Section 3.						
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	JNIT/HR)			
Ore	tons	556	N/A				
MATERIALS ENTERING PROCESS - BATCH OPERAT		MAX. DESIGN	REQUESTED				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)			
MAXIMUM DESIGN (BATCHES / HOUR):		<u> </u>					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	′R):					
FUEL USED: N/A	i i	MUM FIRING RATE (MILLION BT	U/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A		REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
COMMENTS:							

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)


REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-023g		
Sorting Screen Feed Conveyor #2				CONTROL DEV		CD-023		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO		EP-023	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /	7		
Secondary crushing operations with dust pic		•	•					
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	[Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		[Storage s	ilos/bins (Forn	n B6)	Uther (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	ISPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9	%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25 \$	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	ON (AFTER CONTROLS / LIMITS)		(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0039	0.0114	0.0778	0.3409	0.0039	0.0170
PARTICULATE MATTER<10 MICRONS (PM10	₀)	AP-42	0.0013	0.0037	0.0256	0.1120	0.0013	0.0056
PARTICULATE MATTER<2.5 MICRONS (PM2	1.5)	AP-42	0.0002	0.0006	0.0038	0.0168	0.0002	0.0008
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER								
HAZARI	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF	F EXPECTED ACTUAL					
		EMISSION (AFTE		NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		<u> </u>						<u> </u>
TOXI	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOYIO AIR ROLL LITANT	040.110	EMISSION		U- //	11.7.1		l "	. h
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	II.	o/yr
		1	-					
					1			
		1						
		1						
		 	 					
		l .	1		1		l	

EMISSION SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES-023g Sorting Screen Feed Conveyor #2	B9				
Sorting Screen Feed Conveyor #2					
CONTROL DEVICE ID NO(S): CD-023	CONTROL DEVICE ID NO(S): CD-023				
OPERATING SCENARIO: 1 OF 1 EMISSION POINT (STACK) ID NO(S): EP-0	23				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):					
Secondary crushing operations with dust pickups. See PFD Figure 3 in Section 3.					
	ED CAPACITY				
TYPE UNITS CAPACITY (UNIT/HR) LIMITATION	N(UNIT/HR)				
Ore tons 556	N/A				
	ED CAPACITY				
TYPE UNITS CAPACITY (UNIT/BATCH) LIMITATION	(UNIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUR):					
REQUESTED LIMITATION (BATCHES / HOUR): (BATCHES/YR):					
FUEL USED: N/A TOTAL MAXIMUM FIRING RATE (MILLION BTU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
·					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A REQUESTED CAPACITY ANNUAL FUEL USE: N/A					

FORM C1 CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate							C1					
CONTROL DEVICE ID NO:	CD-023	CONTROLS EMISS	IONS FROM	M WHICH	H EMISSION	SOURC	E ID NO(S	S):	ES-023a t	hrough I	ES-023g Secondary Crusher Buildin	g, ES-026, ES-027
EMISSION POINT (STACK) ID NO(S):	EP-023	POSITION IN SERI	ES OF CON	TROLS			NO		1 OF	UNITS		-
OPERATING S	SCENARIO:	•										
1 OF	1		P.E. SEAL	REQUIR	RED (PER 2	q .0112)?	1	YES			NO	
DESCRIBE CONTROL SYSTEM:												
Schust 1 module, size 1715, Mode			in a single	e config	guration.							
A solid state timer provides seque		g of the air valves.										
See control device PFD on the ne	xt page.											
POLLUTANTS COLLECTED:			PM		PM ₁₀		PM _{2.5}					
I GEEG PAINTO GOELEGTED.			- 101	_	10		1 1112.5	-		-		
BEFORE CONTROL EMISSION RATE (L	B/HR):		2.64	_	1.01	_	0.15	_		_		
CAPTURE EFFICIENCY:			95	_%	95	_%	95	_%		_%		
CONTROL DEVICE EFFICIENCY:			99	%	99	%	99	%		%		
CONTROL DEVIGE ETTICIENCY:						-″ -	- 55	-″	-	- "		
CORRESPONDING OVERALL EFFICIEN	CY:		94.05	%	94.05	%	94.05	%		%		
EFFICIENCY DETERMINATION CODE:			1	_	1		1	_		-		
TOTAL AFTER CONTROL EMISSION RA	TE (LB/HR):		0.025		0.010		0.0014					
PRESSURE DROP (IN H ₂ 0): MIN: -10	MAX: -20	GAUGE?	✓ YES		NO							
BULK PARTICLE DENSITY (LB/FT³): 90 INLET TEMPERATURE (°F):						MIN 0		MAX	115			
POLLUTANT LOADING RATE:	LB/HR	✓ GR/FT ³	_		ATURE (°F)			MAX				
INLET AIR FLOW RATE (ACFM):	28,20	_	_		NG TEMP (°		ent					
NO. OF COMPARTMENTS: 1		S PER COMPARTMEN	·		- (· -	H OF BAG	(IN.):	168			
NO. OF CARTRIDGES: 255		FACE AREA PER CAR		Γ ²): 22			TER OF B					
TOTAL FILTER SURFACE AREA (FT ²): 5		AIR TO CLOTH RA		,					.,			
DRAFT TYPE: INDUCED/NEG	_	FORCED/POSITIVE			FILTER MA	ATERIAL:		wov	′EN 🗸	FELTED		
DESCRIBE CLEANING PROCEDURES:										PAF	RTICLE SIZE DISTRIBUTION	
✓ AIR PULSE		SONIC				5	SIZE	٧	VEIGHT %		CUMULATIVE	
REVERSE FLOW		SIMPLE BAG COLL	APSE			(MIC	RONS)	(OF TOTAL		%	
MECHANICAL/SHAKER		RING BAG COLLAR	SE				0-1		0		0	
OTHER:						1	I-10		58		58	
DESCRIBE INCOMING AIR STREAM: Fa			and open ar	reas into	the unit	1	0-25		42		100	
which then intermittently purges to return n	naterial back on	to the cpnveyor.				2	5-50		0		100	
						50	-100		0		100	
						>	100		0		100	
											TOTAL = 100	
ON A SEPARATE PAGE, ATTACH A DIA	GRAM SHOWI	NG THE RELATIONSH	P OF THE	CONTRO	OL DEVICE	TO ITS E	MISSION	SOUR	CE(S):			
COMMENTS:												

Secondary Crusher Baghouse (CD-023)

Sorting Operations

ES-020a - ES-020c CD-020 ES-017a/b and ES-018a/b/c/d CD-018 ES-016a and ES-016b ES-019 and ES-030 CD-016

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-020a					
Sorting Sizing Screen				CONTROL DEVI		CD-020			
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-020		
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS (ATTACH FLOV	V DIAGRAM):						
Sorter sizing screen with dust pickups. See PFD									
E APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	itinas/inks (Foi	rm B7)	
Int.combustion engine/generator (Form B2)		=	nishing/printing	,		on (Form B8)	3 ' (,	
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	U Other (Fo	, ,			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-			
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR		
	S (SUBPARTS	(2). 000			(SUBPARTS?):				
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	,	SEP-NOV 25			
				FORMATION I					
		SOURCE OF		TED ACTUAL	1	POTENTIAL E	MISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0612	0.1787	1.2232	5.3576	0.0612	0.2679	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0206	0.0601	0.4114	1.8021	0.0206	0.0901	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0031	0.0090	0.0617	0.2703	0.0031	0.0135	
SULFUR DIOXIDE (SO2)		711-42	0.0001	0.0000	0.0017	0.2700	0.0001	0.0100	
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
	IS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	I FOR THIS S	OURCE			
TIALARDO	T	SOURCE OF	ī	TED ACTUAL			MISSIONS		
		EMISSION			POTENTIAL EMISSION (BEFORE CONTROLS / LIMITS) (AFTER C			DOLO (LIMITO)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	ntrols / Limits) tons/yr	Ib/hr	tons/yr	lb/hr	ROLS / LIMITS)	
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	10/111	toris/yi	10/111	toris/yi	ID/III	tons/yr	
TOYIC	AIR POLLIE	TANT FMISS	SIONS INFO	DRMATION FO	DR THIS SOLI	RCF		<u> </u>	
TOXIOF	T OLLO	T T	T T	JAMATION I	ok iiiio ooo	NOL .			
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	lb/day lb			
TOXIC AIR FOLLUTAIN	CAS NO.	TACTOR		ID/III	ID/U	ау	ID	/yr	
	+								
		 	 						
	1	 	 						
	1	I	I		I				

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate B9								
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-020a						
Sorting Sizing Screen		CONTROL DEVICE ID NO(S): CD-020						
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-020						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):								
Sorter sizing screen with dust pickups. See PFD Figure 3 in Section 3.								
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Ore	tons	556	N/A					
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):						
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A					
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL USE	E: N/A					
COMMENTS:								
1								

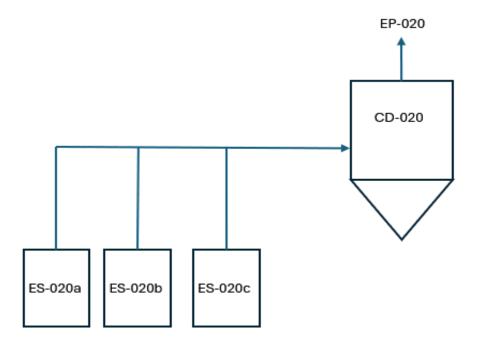
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-020b		
Coarse Sorting Conveyor				CONTROL DEV		CD-020		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID N	O(S):	EP-020	
DESCRIBE IN DETAILTHE EMISSION SO	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()		
Sorter sizing screen with dust pickups. See		•						
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Fe	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SC	URCE		
		SOURCE OF	EXPEC.	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION			(BEFORE CONT		(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0024	0.0069	0.0473	0.2073	0.0024	0.0104
PARTICULATE MATTER<10 MICRONS (PM ₁	٥)	AP-42	0.0008	0.0023	0.0155	0.0681	0.0008	0.0034
PARTICULATE MATTER<2.5 MICRONS (PM	0,	AP-42	0.0001	0.0003	0.0023	0.0102	0.0001	0.0005
SULFUR DIOXIDE (SO2)	2.37							
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER								
	OOUS AIR POL	LUTANT EI	MISSIONS	NFORMATIO	N FOR THIS S	SOURCE		
		SOURCE OF	1					
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTE		1	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				,		,		,
TOX	IC AIR POLLU	TANT EMIS	SIONS INF	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EV	PECTED ACTUAI	EMISSIONS VE	TER CONTRO	I C / I IMITATI	ONS
		EMISSION		PECTED ACTUAL	ONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/c	lay	lb	o/yr
				·				

	REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate								
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-020b							
Coarse Sorting Conveyor		CONTROL DEVICE ID NO(S): CD-020							
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-020							
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):									
Sorter sizing screen with dust pickups. See PFD Figure 3 in Section 3.									
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)					
Ore	tons	338	N/A						
MATERIALS ENTERING PROCESS - BATCH OPERATI	ON	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	NIT/BATCH)					
MAXIMUM DESIGN (BATCHES / HOUR):									
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):							
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A						
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL USE	E: N/A						
COMMENTS:									

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-020c		
Fine Sorting Conveyor				CONTROL DEVI		CD-020		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-020	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			7		
Sorter sizing screen with dust pickups. See		•						
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printing	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Other (Formula) Other (Formula)	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION I	FOR THIS SO	URCE		
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0010	0.0029	0.0202	0.0883	0.0010	0.0044
PARTICULATE MATTER<10 MICRONS (PM ₁)	n)	AP-42	0.0003	0.0010	0.0066	0.0290	0.0003	0.0015
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	0.0000	0.0001	0.0010	0.0044	0.0000	0.0002
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER								
HAZARI	OOUS AIR POL	LUTANT EN	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF	RCE OF EXPECTED ACTUAL			POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOX	IC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	FX	PECTED ACTUAL	FMISSIONS AF	TER CONTRO	IS/LIMITATI	ONS
		EMISSION		. 201227.0107	1			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	o/yr
							<u> </u>	
							<u> </u>	
							<u> </u>	
							<u> </u>	
								
			<u> </u>					


	- Application for	or Air Permit to Construct/Opera	ite	В9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: E	S-020c	
Fine Sorting Conveyor		CONTROL DEVICE ID NO(S): (CD-020	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	O(S): EP-020	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Sorter sizing screen with dust pickups. See PFD Figure 3 in Section 3.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(U	
Ore	tons	144	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	IIT/BATCH)
	+			
	1			
MANIMUM DECION (DATOLIES (LIQUE))	<u> </u>			
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	B)·		
FUEL USED: N/A			II/IID). NI/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		MUM FIRING RATE (MILLION BT CAPACITY ANNUAL FUEL USE:	•	
COMMENTS:				

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Div	vision of Air Quality	- Application for Air Permit to	Construct/Operate	1			C1
CONTROL DEVICE ID NO:	CD-020	CONTROLS EMISS	IONS FROM WHICH EMISSIO	N SOURCE ID NO(s): ES-020	a/b/c Sorter	Sizing Screens and	Conveyors
EMISSION POINT (STACK) ID NO(S):	EP-020	POSITION IN SERI	ES OF CONTROLS	NO.	1 OF	1 UNITS		
OPERATING SO	CENARIO:							
1 OF 1	1		P.E. SEAL REQUIRED (PER 2	2q .0112)?	YES		NO	
DESCRIBE CONTROL SYSTEM:								
Schust 1 module, size 1315, Mode	l 168, Pulse .	let Dust Collector	in a single configuration.					
A solid state timer provides seque	ntial pulsing	of the air valves.						
See control device PFD on the nex	t page.							
POLLUTANTS COLLECTED:			PM PM ₁₀	PM _{2.5}				
BEFORE CONTROL EMISSION RATE (LB/HR):		1.29 0.43	0.07					
BEI ONE CONTINUE EMIGGIONIUME (EE	<i>,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.20	0.07				
CAPTURE EFFICIENCY:			95 % 95	% 95	%	%		
CONTROL DEVICE EFFICIENCY:			99 % 99		%	%		
CORRESPONDING OVERALL EFFICIENC	~V·		94.05 % 94.05	% 94.05	%	0/.		
CORRESPONDING OVERALL EFFICIENC	J1.		94.03 /6 94.03	76 94.03	,70 			
EFFICIENCY DETERMINATION CODE:			1 1	1				
TOTAL AFTER CONTROL EMISSION RAT	TE (LB/HR):		0.012 0.004	0.0006				
PRESSURE DROP (IN H ₂ 0): MIN: -10	MAX: -20	GAUGE?	✓ YES					
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPERATURE (°F):	MIN 0	MAX 115			
POLLUTANT LOADING RATE:	LB/HR	✓ GR/FT ³	OUTLET TEMPERATURE (°F) MIN 0	MAX 115			
INLET AIR FLOW RATE (ACFM):	22,300		FILTER OPERATING TEMP (F): Ambient				
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER COMPARTMENT: 195 LENGTH OF BAG (IN.): 168								
NO. OF CARTRIDGES: 195		ACE AREA PER CAR		DIAMETER OF BA	AG (IN.): 6			
TOTAL FILTER SURFACE AREA (FT ²): 4,		AIR TO CLOTH RA						
DRAFT TYPE: INDUCED/NEGA	ATIVE	FORCED/POSITIVE	FILTER MA	ATERIAL:		✓ FELTED	IOTRIPUTION.	
DESCRIBE CLEANING PROCEDURES:				0.77		RTICLE SIZE D		
✓ AIR PULSE ☐ REVERSE FLOW		SONIC SIMPLE BAG COLL	ADOF	SIZE (MICRONS)	WEIGHT % OF TOTAL		CUMULATIVE %	:
☐ MECHANICAL/SHAKER☐ OTHER:		RING BAG COLLAR	75E	0-1	0		0	
DESCRIBE INCOMING AIR STREAM: Fan	draws air strea	m from transfer points	s and open areas into the unit	1-10 10-25	58 42		100	
which then intermittently purges to return m			·	25-50	0		100	
				50-100	0		100	
				>100	0		100	
							TOTAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAG	GRAM SHOWIN	IG THE RELATIONS	HIP OF THE CONTROL DEVICE	E TO ITS EMISSION	N SOURCE(S):			
COMMENTS:								

Sorter Sizing Screen Baghouse (CD-020)

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-017a		
Sorting Bypass Conveyor #1				CONTROL DEVI		CD-018		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	O(S):	EP-018	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Ore sorting operations with dust pickups. See PF	,							
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):					-	
Coal,wood,oil, gas, other burner (Form B1)		<u>-</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2)		=	0 (ng (Form B4) Manuf. of chemicals/coatings/inks (Form B5) Incineration (Form B8)				
Liquid storage tanks (Form B3)			ilos/bins (Forn	• ,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			T	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): I		25 MAR-N	MAY 25	JUN-AUG	, , , , ,	SEP-NOV 25		
				FORMATION I				
0.0.12.0.0	7	SOURCE OF	7	TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0005	0.0015	0.0101	0.0442	0.0005	0.0022
PARTICULATE MATTER (1 MI)		AP-42	0.0003	0.0005	0.0033	0.0442	0.0003	0.0022
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0002	0.0003	0.0005	0.0022	0.0002	0.0007
SULFUR DIOXIDE (SO2)		A1 -42	0.0000	0.0001	0.0003	0.0022	0.0000	0.0001
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	MISSIONS I	NFORMATION	I FOR THIS S	CURCE		
MAZANDOO	T AIN I OL	ī	Ţ		1		EMISSIONS	
		SOURCE OF			POTENTIAL EMISSION (BEFORE CONTROLS / LIMITS) (AFTER			
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)		1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/NI	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
							——	<u> </u>
								
							——	<u> </u>
								
								
TOVIC	ID DOLLII	L TANT EMIS	SIONIS INIE	DRMATION FO		DCE.		
TOXIC A	IK POLLO			JRIVIA I ION FO	JK THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATIO	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	11- /-1		15-	ls on
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ау	ID	o/yr
							 	
		-	}				 	
		 	}		 		 	
		 	}		 		 	
		-			 		 	
								
		<u> </u>	<u> </u>		<u> </u>			

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-017a	
Sorting Bypass Conveyor #1		CONTROL DEVICE ID NO(S):	CD-018	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-018	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Ore sorting operations with dust pickups. See PFD Figure 3 in Section 3.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Ore	tons	72	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
HAVING DECIDAL (DATOLIES (LIQUE)				
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	D).		
		,	THUES ALIA	
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		MUM FIRING RATE (MILLION B' CAPACITY ANNUAL FUEL USE		
COMMENTS:	INEQUESTEE	CAFACITT ANNOALT OLL OSI	N/A	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-017b		
Sorting Bypass Conveyor #2				CONTROL DEVI		CD-018		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	D(S):	EP-018	
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Ore sorting operations with dust pickups. See Pl	,	•						
E APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):					-	
Coal,wood,oil, gas, other burner (Form B1)		<u>~</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2)		=	0 (g (Form B4)				
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2)· OOO	2,11 20 122		(SUBPARTS?):	2,11,1111 02 11		
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	, , , , ,	SEP-NOV 25		
				FORMATION I				
	.,	SOURCE OF		TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0005	0.0015	0.0101	0.0442	0.0005	0.0022
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		AP-42	0.0003	0.0005	0.0033	0.0442	0.0003	0.0022
PARTICULATE MATTER< 2.5 MICRONS (PM ₁₀)		AP-42	0.0002	0.0003	0.0005	0.0022	0.0002	0.0007
SULFUR DIOXIDE (SO2)		A1 -42	0.0000	0.0001	0.0003	0.0022	0.0000	0.0001
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	MISSIONS I	NFORMATION	I FOR THIS S	CURCE		
HAZARDOO	T T		T		1		EMISSIONS	
		SOURCE OF			POTENTIAL EMISSION (BEFORE CONTROLS / LIMITS) (AFTER)			
HAZARDOUS AIR BOLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)		1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		<u> </u>	-				——	<u> </u>
		-	-					
		1						
		<u> </u>	-				——	<u> </u>
		1						
		1						
TOVIC	VID DOLLII	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLL	DCE.		
TOXICF	AIR POLLO	I		JRIVIA I ION FO	JK THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATIO	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	11- /-1		15-	ls on
TOXIC AIR FOLLUTANT	CAS NO.	FACTOR	-	lb/hr	lb/d	ау	ID	o/yr
		<u> </u>	-				 	
	+	1	-				 	
	+	1	 		 		 	
	+	1	 		 		 	
	1		 		 		<u> </u>	
								
		<u> </u>	<u> </u>		<u> </u>			

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-017b	
Sorting Bypass Conveyor #2		CONTROL DEVICE ID NO(S):	CD-018	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-018	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Ore sorting operations with dust pickups. See PFD Figure 3 in Section 3.				
		I		
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	-	MAX. DESIGN	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	JNII/HR)
Ore	tons	72	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
			<u> </u>	
MAXIMUM DESIGN (BATCHES / HOUR):	_			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	Ξ: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Division	n of Air Quality	/ - Applicatio	n for Air Permit t	o Construct/Ope	erate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-018a		
Coarse Sorter Bin				CONTROL DEV	ICE ID NO(S):	CD-016		
OPERATING SCENARIO 1 OF 1				EMISSION POIN	IT (STACK) ID N	O(S):	EP-018	
DESCRIBE IN DETAILTHE EMISSION SO	OURCE PROCESS	ATTACH FLOV	V DIAGRAM):	•				
Ore sorting operations with dust pickups. S	See PFD Figure 3 in	Section 3.	ŕ					
APPROPRIATE FORM B1-B9 ON THE F		<u></u>						
Coal,wood,oil, gas, other burner (Forn	*		king (Form B4			of chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form	m B2)		nishing/printing llos/bins (Form	J (-	tion (Form B8)		
Liquid storage tanks (Form B3)		√ Storage si	`		Other (F	orm 69)		
START CONSTRUCTION DATE: TBD				FACTURED: TBD		DAY/M// FO M	W/VD	
MANUFACTURER / MODEL NO.: TBD IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	23): 000	EXPECTED	OP. SCHEDULE:	(SUBPARTS?):	DAY/WK 52 W	NIK	
PERCENTAGE ANNUAL THROUGHPUT	•	25 MAR-N	1AY 25	JUN-AUG	· / =	SEP-NOV 25		
	ERIA AIR POLL							
OIII7		SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)
AIR POLLUTANT EMITTED	AIR POLLUTANT EMITTED		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		FACTOR AP-42	0.0209	0.0612	0.4188	1.8344	0.0209	0.0917
PARTICULATE MATTER<10 MICRONS (PM	1 ₁₀)	AP-42	0.0099	0.0289	0.1981	0.8676	0.0099	0.0434
PARTICULATE MATTER<2.5 MICRONS (PM	M _{2.5})	AP-42	0.0015	0.0044	0.0300	0.1314	0.0015	0.0066
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VO	C)							
LEAD								
OTHER	2010 412 201		MODIONO	\	 			
HAZAR	DOUS AIR POL	T			N FUR THIS S			
		SOURCE OF		TED ACTUAL		POTENTIAL I		
HAZARDOUS AIR POLLUTANT	CAS NO.	EMISSION FACTOR	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	1	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	ID/III	tons/yr	ID/III	tons/yr
		1						
TO	KIC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOL	IRCE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
		EMISSION						,
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	ID/0	day	ID	/yr
		 						
					1			
		<u> </u>						
Att - 1 (4) i - i 1 1 - ti 1		(O) in all a star all ass		de de de la contraction de la		h		

EMISSION SOURCE (STORAGE SILO/BINS)

PTION:					
FIION.			EMISSION S	OURCE ID NO: ES-018a	
			CONTROL D	EVICE ID NO(S): CD-016	
1 OF 1			EMISSION P	OINT(STACK) ID NO(S): EP-018	
		ı dust pic	ckups. See PFD Figur	e 3 in Section 3.	
			DENSITY OF MATE	RIAL (LB/FT3): 156	
CUBIC FEET: 1 000					
	DIAMETER:	(OR)		WIDTH: 20 HEIGHT: 30	
•					
				FILLED FROM	
	BELT CONVEYOR			RAILCAR TRUCK STORAGE PILE OTHER: Upstream Process Units	
RIAL UNLOADED FRO	M SILO? Conveyor				
RATE OF MATERIAL (1	ONS/HR): 338				
RATE OF MATERIAL (1	·				
	CUBIC FEET: 1,000 HEIGHT: COUGHPUT (TONS) COURSE Sorter	CUBIC FEET: 1,000 HEIGHT: DIAMETER: ROUGHPUT (TONS) ACTUAL: SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:	CUBIC FEET: 1,000 HEIGHT: DIAMETER: (OR) COUGHPUT (TONS) ACTUAL: 1,974,90 SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: C: Coarse Sorter	DENSITY OF MATER CUBIC FEET: 1,000 HEIGHT: DIAMETER: COUGHPUT (TONS) ACTUAL: 1,974,907 MAXIMUM DI SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: C: Coarse Sorter	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NO	CDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-018b				
Belt Feeder - Coarse Sorter #1/#2				CONTROL DEVI		CD-016		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	O(S):	EP-018	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Ore sorting operations with dust pickups. See PF	,							
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)
Int.combustion engine/generator (Form B2)		=	nishing/printing	•	=	on (Form B8)	9=/ (*	,
Liquid storage tanks (Form B3)			ilos/bins (Forn	• ,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			T	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2): 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	MAY 25	JUN-AUG	, , , , ,	SEP-NOV 25		
				FORMATION I				
	7	SOURCE OF	7	TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0024	0.0069	0.0473	0.2073	0.0024	0.0104
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0008	0.0023	0.0155	0.0681	0.0008	0.0034
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0001	0.0023	0.0023	0.0102	0.0001	0.0005
SULFUR DIOXIDE (SO2)		A1 -42	0.0001	0.0003	0.0023	0.0102	0.0001	0.0003
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FN	MISSIONS I	NFORMATION	I FOR THIS S	CURCE	<u> </u>	
HAZAKOOO	T AIN I OL	ī	T		1		MICCIONIC	
		SOURCE OF			POTENTIAL EMISSION (BEFORE CONTROLS / LIMITS) (AFTER			
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)		1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/NI	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOVICA	ID DOLLII	L TANT EMICS	SIONIS INIE	DRMATION FO	D TUIS SOLL	DCE.		
TOXIC A	IK POLLO	T		JRIVIA I ION FO	JK THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	11- /-1		I 15	h m
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ау	ID	/yr
		-	}					
		 	}		 			
		 	}		 			
		-			 			
		 			 			
	l	<u> </u>	<u> </u>		<u> </u>		<u> </u>	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-018b	
Belt Feeder - Coarse Sorter #1/#2		CONTROL DEVICE ID NO(S):	CD-016	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-018	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Ore sorting operations with dust pickups. See PFD Figure 3 in Section 3.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Spodumene Concentrate	tons	338	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):	(0.4.701.150.14	D)		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y			
FUEL USED: N/A		MUM FIRING RATE (MILLION B		
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTEL	CAPACITY ANNUAL FUEL USI	E: N/A	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

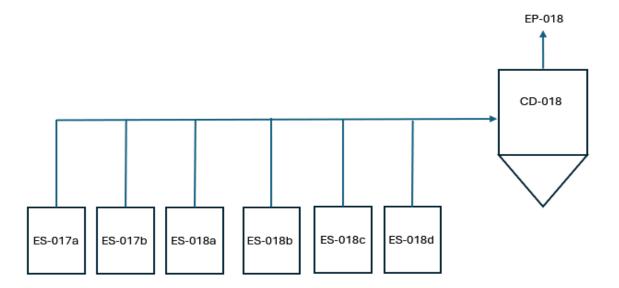
REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-018c		•
Fine Sorter Bin				CONTROL DEV	CE ID NO(S):	CD-016		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-018	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		,	- ()		
Ore sorting operations with dust pickups. Se		•						
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		√ Storage s	ilos/bins (Forn	n B6)	Other (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	· ·			
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	ISPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	ЛАY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0089	0.0261	0.1784	0.7815	0.0089	0.0391
PARTICULATE MATTER<10 MICRONS (PM ₁)	,)	AP-42	0.0042	0.0123	0.0844	0.3696	0.0042	0.0185
PARTICULATE MATTER<2.5 MICRONS (PM)	,	AP-42	0.0006	0.0019	0.0128	0.0560	0.0006	0.0028
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER								
	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	V FOR THIS S	OURCE		
		SOURCE OF				POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				,		,		,
TOX	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EV	PECTED ACTUAI	EMISSIONS AE	TED CONTRO	I C / I IMITATI	ONS
		EMISSION		PECTED ACTUAL	- EIVIISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr
				·				

EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/Divisi	on of Air Quality - App	olication	for Air Permit to	o Construct/Operate	В6			
PTION:			EMISSIO	N SOURCE ID NO: ES-018c				
			CONTROL DEVICE ID NO(S): CD-016					
1 OF 1			EMISSIO	ON POINT(STACK) ID NO(S): EP-018				
		ı dust pic	kups. See PFD F	Figure 3 in Section 3.				
			DENSITY OF MA	ATERIAL (LB/FT3): 156				
CUBIC FEET: 1 000								
	DIAMETER:	(OR)		WIDTH: 20 HEIGHT: 30				
•		841,380						
			•	FILLED FROM				
	SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:			RAILCAR TRUCK STORAGE PILE OTHER: Upstream Process Unit:	s			
RIAL UNLOADED FROM	M SILO? Conveyor							
ATE OF MATERIAL (T	ONS/HR): 144							
NG RATE OF MATERIA	AL (TONS/HR): 144							
	CUBIC FEET: 1,000 HEIGHT: DUGHPUT (TONS) ILLED Fine Sorter RIAL UNLOADED FROM	CUBIC FEET: 1,000 HEIGHT: DIGHPUT (TONS) ILLED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:	CUBIC FEET: 1,000 HEIGHT: DIAMETER: (OR) DUGHPUT (TONS) ACTUAL: 841,380 SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Fine Sorter RIAL UNLOADED FROM SILO? Conveyor	DENSITY OF M. CUBIC FEET: 1,000 HEIGHT: DIAMETER: SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Fine Sorter EMISSIC CONTRO DENSITY OF M. TONS: 75 MAXIMU MAXIMU MECHANICALLY FILLED SCREW CONVEYOR BUCKET ELEVATOR OTHER: Fine Sorter RIAL UNLOADED FROM SILO? Conveyor	CONTROL DEVICE ID NO(S): CD-016 1 OF 1 EMISSION POINT(STACK) ID NO(S): EP-018 ROCESS (ATTACH FLOW DIAGRAM): Inveyed to the feed bin which is controlled with dust pickups. See PFD Figure 3 in Section 3. DENSITY OF MATERIAL (LB/FT3): 156 CUBIC FEET: 1,000 TONS: 75 HEIGHT: DIAMETER: (OR) LENGTH: 20 WIDTH: 20 HEIGHT: 30 DUGHPUT (TONS) ACTUAL: 841,380 MAXIMUM DESIGN CAPACITY: 1,261,440 LLED MECHANICALLY FILLED FILLED FROM SCREW CONVEYOR RAILCAR BUCKET ELEVATOR STORAGE PILE OTHER: Upstream Process Unit			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-018d						
Belt Feeder - Fine Sorter #1/#2				CONTROL DEVI	ICE ID NO(S):	CD-016		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-018	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /	7		
Ore sorting operations with dust pickups. Se								
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printing	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Uther (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	MAY 25	JUN-AUG	25 8	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0010	0.0029	0.0202	0.0883	0.0010	0.0044
PARTICULATE MATTER<10 MICRONS (PM ₁)	n)	AP-42	0.0003	0.0010	0.0066	0.0290	0.0003	0.0015
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	0.0000	0.0001	0.0010	0.0044	0.0000	0.0002
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER								
HAZARI	OOUS AIR POL	LUTANT EN	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF	E OF EXPECTED ACTUAL		POTENTIAL EMISSIONS			
		EMISSION	(AFTER CO	NTROLS / LIMITS) (BEFORE C		BEFORE CONTROLS / LIMITS)		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOX	IC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	FX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	IS/LIMITATI	ONS
		EMISSION		. 201227.0107	1			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	o/yr
		1						
							<u> </u>	
							<u> </u>	
							<u> </u>	
								


	Application for	or Air Permit to Construct/Oper	rate	В9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-018d					
Belt Feeder - Fine Sorter #1/#2		CONTROL DEVICE ID NO(S):	CD-016				
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-018				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Ore sorting operations with dust pickups. See PFD Figure 3 in Section 3.							
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE		MAX. DESIGN	REQUESTED				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	JNIT/HR)			
Spodumene Concentrate	tons	144	N/A				
	 		 				
	<u> </u>		 				
	 		 				
	<u> </u>		 				
	 		 				
	<u> </u>		 				
MATERIAL O FUTERINO DECCESS. DATOU OPERATIO	221	MAY DECICAL	BEOUECTED	CARACITY			
MATERIALS ENTERING PROCESS - BATCH OPERATION TYPE	UNITS	MAX. DESIGN CAPACITY (UNIT/BATCH)	REQUESTED				
IIFE	UNITO	CAPACITE (UNITIDATOLI)	LIMITATION (UN	VII/DATON)			
	<u> </u>						
	 						
	 						
	 						
	 						
MAXIMUM DESIGN (BATCHES / HOUR):		<u> </u>					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/YI	R):					
FUEL USED: N/A		MUM FIRING RATE (MILLION B	TII/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE					
COMMENTS:							

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/D	ivision of Air Quality	- Application for A	ir Permit to	Constr	uct/Operate)				C1
CONTROL DEVICE ID NO: CD-018	CONTROLS EMISS	IONS FROM WHIC	CH EMISSION	SOUF	RCE ID NO(S):	ES-017a	a/b & ES-018	la/b/c/d	
EMISSION POINT (STACK) ID NO(S): EP-018	POSITION IN SERI	ES OF CONTROLS	3		NO.		1 OF	1 UNITS		
OPERATING SCENARIO:										
1 OF 1		P.E. SEAL REQU	IRED (PER 2	q .0112)? 🗸	YES			NO	
DESCRIBE CONTROL SYSTEM: Schust 1 module, size 0915, Model 168, Pulse A solid state timer provides sequential pulsing See control device PFD on the next page.		in a single con	figuration.							
POLLUTANTS COLLECTED:		PM	PM ₁₀		PM _{2.5}					
BEFORE CONTROL EMISSION RATE (LB/HR):		0.68	0.31	_	0.05	_		_		
CAPTURE EFFICIENCY:		95 %	95	%	95	%		%		
CONTROL DEVICE EFFICIENCY:		99 %	99	%	99	_%		%		
CORRESPONDING OVERALL EFFICIENCY:		94.05 %	94.05	%	94.05	_%		%		
EFFICIENCY DETERMINATION CODE:		1	1	-	1	-		_		
TOTAL AFTER CONTROL EMISSION RATE (LB/HR):		0.0065	0.0030	_	0.00045	-				
PRESSURE DROP (IN H ₂ 0): MIN: -10 MAX: -20	GAUGE?	✓ YES	☐ NO							
BULK PARTICLE DENSITY (LB/FT³): 90		INLET TEMPERA		MIN 0		MAX				
POLLUTANT LOADING RATE: LB/HR	☑ GR/FT³	OUTLET TEMPER				MAX	115			
INLET AIR FLOW RATE (ACFM): 16,90 NO. OF COMPARTMENTS: 1 NO. OF BAGS		FILTER OPERAT	ING TEMP (T	1		· /INI \-	160			
NO. OF COMPARTMENTS: 1 NO. OF BAGS PER COMPARTMENT: 135 LENGTH OF BAG (IN.): 168 NO. OF CARTRIDGES: 135 FILTER SURFACE AREA PER CARTRIDGE (FT ²): 22 DIAMETER OF BAG (IN.): 6										
TOTAL FILTER SURFACE AREA (FT²): 2,970	AIR TO CLOTH RA			DIAWE	TER OF BA	AG (IIV	.). 0			
DRAFT TYPE: INDUCED/NEGATIVE	FORCED/POSITIVE		FILTER MA	TERIA	L:	WOV	EN -	/ FELTED		
DESCRIBE CLEANING PROCEDURES:					_			CLE SIZE DIST	RIBUTION	
✓ AIR PULSE	SONIC				SIZE	٧	VEIGHT %		CUMULATIVE	
REVERSE FLOW	SIMPLE BAG COLL	APSE		(M	CRONS)	C	OF TOTAL		%	
☐ MECHANICAL/SHAKER ☐	RING BAG COLLAR	PSE			0-1		0		0	
OTHER:					1-10		58		58	
DESCRIBE INCOMING AIR STREAM: Fan draws air strea which then intermittently purges to return material back or		and open areas in	to the unit		10-25		42		100	
parges to retain material past of	no ano opiniojon				25-50		0		100	
					50-100		0		100	
				-	>100		0		100	
								TO	TAL = 100	
					=					
ON A SEPARATE PAGE, ATTACH A DIAGRAM SHOWIN COMMENTS:	NG THE RELATIONSH	IP OF THE CONTE	ROL DEVICE	10118	EMISSION	SOUF	RCE(S):			

Sorter Bypass Converor Baghouse (CD-018)

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-016a		
Coarse Sorter #1/#2				CONTROL DEVI		CD-016		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	O(S):	EP-016	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):					
Ore sorting operations with dust pickups. See PF	,	•						
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):					-	
Coal,wood,oil, gas, other burner (Form B1)		<u></u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2)		=	nishing/printing	•		on (Form B8)	3 . (,
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): I		25 MAR-N	//AY 25	JUN-AUG		SEP-NOV 25		
				FORMATION I				
0.0.12.0.0	7	SOURCE OF		TED ACTUAL	<u> </u>	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		ı	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0280	0.0819	0.5608	2.4562	0.0280	0.1228
PARTICULATE MATTER (1 MI)		AP-42	0.0200	0.0357	0.2447	1.0719	0.0122	0.0536
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0018	0.0054	0.0370	0.1620	0.0018	0.0081
SULFUR DIOXIDE (SO2)		A1 -42	0.0010	0.0034	0.0370	0.1020	0.0010	0.0001
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	MISSIONS I	NFORMATION	I FOR THIS S	CURCE		
MAZAKOOO	I AIN I OL		T		1		EMISSIONS	
		SOURCE OF		TED ACTUAL				
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)		1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	+	<u> </u>	-					<u> </u>
	<u> </u>	-						
	<u> </u>	1					 	
	+	<u> </u>	-					<u> </u>
	<u> </u>	1					 	
	<u> </u>	1					 	
TOVIC	ID DOLLIE	L TANT EMIS	L SIONS INE	DRMATION FO		DCE.		
TOXIC A	T POLLO	T	T T	JRIVIA I ION FO	ik inis sooi	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	11- /-1			/s em
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/da	ау	lb.	o/yr
	+	<u> </u>	-				 	
		-					 	
	1	1	-				 	
		1					 	
		1					 	
	 	1	-				 	
			<u> </u>		<u> </u>			

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Ope	rate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-016a				
Coarse Sorter #1/#2		CONTROL DEVICE ID NO(S):	CD-016			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-016			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Ore sorting operations with dust pickups. See PFD Figure 3 in Section 3						
lette corung operations with adot pictupe.	•					
MATERIAL O ENTERINO PROCESS. CONTINUOUS PROC	F00	I MAY DECICAL	DEQUESTED	04540171/		
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	REQUESTED			
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Spodumene Concentrate	tons	338	N/A			
MATERIAL O ENTERINO PROCESS. PATOLI OPERATIO	ON	MAY DECION	DECLIENTED	CARACITY		
MATERIALS ENTERING PROCESS - BATCH OPERATION TYPE	UNITS	MAX. DESIGN CAPACITY (UNIT/BATCH)	REQUESTED LIMITATION (UI			
TIFL	UNITS	CAPACITI (UNIT/BATCIT)	LIMITATION (OI	VII/BATCII)		
MANUALIA DEGION (DATOLIEG / LICUS)		<u> </u>				
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	D).				
·	,	,				
FUEL USED: N/A	1	MUM FIRING RATE (MILLION B				
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTEL	CAPACITY ANNUAL FUEL USI	E: N/A			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-016b						
Fine Sorter #1/#2				CONTROL DEV	CE ID NO(S):	CD-016		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-016	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()		
Ore sorting operations with dust pickups. Se	,	•						
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printing	g (Form B5)	Incinerati	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Uther (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9	%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25 8	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE		
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0119	0.0349	0.2389	1.0464	0.0119	0.0523
PARTICULATE MATTER<10 MICRONS (PM10	₀)	AP-42	0.0052	0.0152	0.1043	0.4567	0.0052	0.0228
PARTICULATE MATTER<2.5 MICRONS (PM2	1.5)	AP-42	0.0008	0.0023	0.0158	0.0690	0.0008	0.0035
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER								
HAZARI	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF	EXPEC1	TED ACTUAL	POTENTIAL EMISSIONS			
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		<u> </u>		<u> </u>		L		<u> </u>
TOXI	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUA	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
		EMISSION			1			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	FACTOR lb/hr lb/day				lb.	o/yr
			ļ					
			 		1			
			<u> </u>					

REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application f	or Air Permit to Construct/Opera	ate	В9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-016b	
Fine Sorter #1/#2		CONTROL DEVICE ID NO(S):	CD-016	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-016	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Ore sorting operations with dust pickups. See PFD Figure 3 in Section 3.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Spodumene Concentrate	tons	144	N/A	
		1		
		1		
	1	1		
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
	 	1		
	 	+		
	 	+		
	1	+		
	 			
	+			
		+		
MAXIMUM DESIGN (BATCHES / HOUR):	<u> </u>	1		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	'R)·		
FUEL USED: N/A	Ī	MUM FIRING RATE (MILLION BT	······································	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

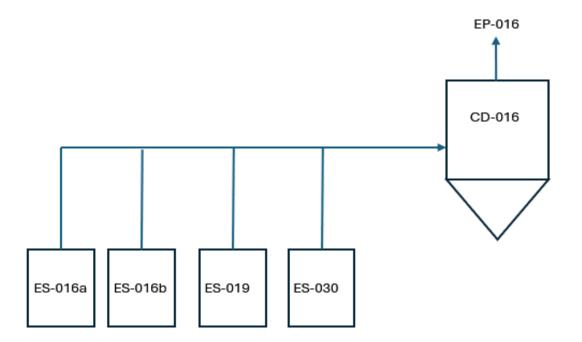
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ID NO: ES-030		
Sorter Rejects Conveyor				CONTROL DEV		CD-016		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-016	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS (ATTACH FLOV	V DIAGRAM):		(-)	- ()		
Sorter rejects conveyor with dust pickups. S		•						
APPROPRIATE FORM B1-B9 ON THE F	OLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	[Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		[Storage s	ilos/bins (Forn	n B6)	Other (Fe	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	3?): 000		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SC	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0007	0.0026	0.0137	0.0601	0.0007	0.0030
PARTICULATE MATTER<10 MICRONS (PM1	0)	AP-42	0.0002	0.0008	0.0045	0.0197	0.0002	0.0010
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	0.0000	0.0001	0.0007	0.0030	0.0000	0.0001
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC	:)							
LEAD								
OTHER								
HAZARI	DOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF	URCE OF EXPECTED ACTUAL		POTENTIAL EMISSIONS			
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOX	IC AIR POLLU		T	DRIMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOYIC AID DOLL LITANT	CACNO	EMISSION		Ile /le n	15./-	I=		- fo con
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	III	o/yr
		+						
		 	 					
	1				1			
		1	1		1			

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-030	
Sorter Rejects Conveyor		CONTROL DEVICE ID NO(S):	CD-016	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-016	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Sorter rejects conveyor with dust pickups. See PFD Figure 3 in Section 3	3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Ore	tons	98	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
HAVING PERIOD (DATE (HOUE)				
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	D).		
		,	THUES ALIA	
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		MUM FIRING RATE (MILLION B' CAPACITY ANNUAL FUEL USE		
COMMENTS:	INEQUESTEE	CAFACITT ANNOALT OLL OSI	N/A	

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-019			
Tertiary Crushing Feed Conveyor				CONTROL DEVI		CD-016			
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	O(S):	EP-016		
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /				
Tertiary crushing conveyor with dust pickups. Se	,								
E APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)	
Int.combustion engine/generator (Form B2)		=	nishing/printing	,		on (Form B8)	9=/ (*	,	
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	U Other (Fo				
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-			
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR		
IS THIS SOURCE SUBJECT TO? UNSPS (SUBPARTS?): OOO NESHAP (SUBPARTS?):									
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25			
				FORMATION I					
		SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0029	0.0084	0.0578	0.2533	0.0029	0.0127	
PARTICULATE MATTER(10 MICRONS (PM ₁₀)		AP-42	0.0009	0.0028	0.0190	0.0832	0.0009	0.0042	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0003	0.0026	0.0028	0.0125	0.0003	0.00042	
SULFUR DIOXIDE (SO2)		711-42	0.0001	0.0004	0.0020	0.0120	0.0001	0.0000	
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
	IS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE			
77.12111300	T	SOURCE OF	T		POTENTIAL EMISSIONS				
		EMISSION	(AFTER CONTROLS / LIMITS)					DOLO (LIMITO)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	ROLS / LIMITS)	
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	10/111	toris/yi	10/111	toris/yi	ID/III	tons/yr	
TOYIC	AIR POLLIE	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLI	RCF	<u> </u>		
TOXIO	T OLLO			JAMATION I	ok mio oco	NOL .			
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	21/	lh.	/yr	
TOXIC AIR FOLLUTAIN	CAS NO.	TACTOR		ID/III	ID/G	ау	ID	/ yı	
	1								
		 	 						
		 	 		1				
	1	I	I		I		l		


REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application f	or Air Permit to Construct/Oper	ate	B9			
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-019					
Tertiary Crushing Feed Conveyor		CONTROL DEVICE ID NO(S):	CD-016				
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-016				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):	on 2						
Tertiary crushing conveyor with dust pickups. See PFD Figure 3 in Section	on 3.						
		1					
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	REQUESTED				
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	· · · · · · · · · · · · · · · · · · ·			
Ore	tons	413	N/A				
	1						
	+						
	1						
	1						
	1						
	1						
MATERIALS ENTERING PROCESS - BATCH OPERATION	011	MAY DECICN	REQUESTED	CARACITY			
TYPE	UNITS	MAX. DESIGN CAPACITY (UNIT/BATCH)	LIMITATION (UN				
111 2	UNITO	CAFACITI (CIVIT/DATCIT)	LIMITATION	VIII/DATOLIJ			
	1		<u> </u>				
	1		<u> </u>				
			<u> </u>				
	 						
	†						
	†						
	†						
MAXIMUM DESIGN (BATCHES / HOUR):							
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):					
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A				
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE					
COMMENTS:							

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate C1									
CONTROL DEVICE ID NO:	CD-016	CONTROLS EMISS	IONS FROM WHICH	EMISSION	SOURCE ID NO(S): ES-01	6a and ES-016	b Ore Sorting Building & ES-	019 & ES-030	
EMISSION POINT (STACK) ID NO(S):	EP-016	POSITION IN SERIE	ES OF CONTROLS		NO.	1 OF	1 UNITS			
OPERATING S	CENARIO:									
1 OF	1		P.E. SEAL REQUIR	ED (PER 2q	.0112)?	YES		NO		
DESCRIBE CONTROL SYSTEM:										
Schust 2 module, size 1215, Mod A solid state timer provides seque See control device PFD on the ne	ential pulsing		-	guration.						
POLLUTANTS COLLECTED:			PM	PM ₁₀	PM _{2.5}					
BEFORE CONTROL EMISSION RATE (L	B/HR):		0.87	0.37	0.06					
CAPTURE EFFICIENCY:			95 %	95 9	% 95	.%	%			
CONTROL DEVICE EFFICIENCY:			99 %	99 9	% 99	.%	%			
CORRESPONDING OVERALL EFFICIEN	CY:		94.05 %	94.05	% 94.05	%	%			
EFFICIENCY DETERMINATION CODE:				1	1	·				
TOTAL AFTER CONTROL EMISSION RA	TE (LB/HR):		800.0	0.004	0.001	<u> </u>				
PRESSURE DROP (IN H ₂ 0): MIN: -10	MAX: -20	GAUGE?	✓ YES	NO						
BULK PARTICLE DENSITY (LB/FT ³): 90			INLET TEMPERATU			MAX 115				
POLLUTANT LOADING RATE:	LB/HR	✓ GR/FT ³	OUTLET TEMPERA			MAX 115				
INLET AIR FLOW RATE (ACFM):	44,300		FILTER OPERATING							
NO. OF COMPARTMENTS: 2		PER COMPARTMEN			LENGTH OF BAG					
NO. OF CARTRIDGES: 360		ACE AREA PER CAR			DIAMETER OF BA	AG (IN.): 6				
TOTAL FILTER SURFACE AREA (FT ²): 7		AIR TO CLOTH RA								
DRAFT TYPE: ✓ INDUCED/NEG	ATIVE	FORCED/POSITIVE	<u> </u>	FILTER MAT	ERIAL:	WOVEN	✓ FELTED			
DESCRIBE CLEANING PROCEDURES:				F		·	-	SIZE DISTRIBUTION		
✓ AIR PULSE		SONIC			SIZE	WEIGHT 9		CUMULATIVE		
REVERSE FLOW					(MICRONS)	OF TOTAL	-	%		
MECHANICAL/SHAKER		RING BAG COLLAF	'SE	-	0-1	0		0		
OTHER: DESCRIBE INCOMING AIR STREAM: Fa	n drawe air etres	m from transfer point	s and open areas into	the unit	1-10	58		58		
which then intermittently purges to return r			s and open areas into	- une unit	10-25	42		100		
					25-50	0		100		
				-	50-100	0		100		
				F	>100	U		100		
				F	-			TOTAL = 100		
ON A SEPARATE PAGE, ATTACH A DIA	GRAM SHOWIN	IG THE RELATIONSH	IIP OF THE CONTRO	OL DEVICE 7	TO ITS EMISSION	SOURCE(S):				
COMMENTS:										

Ore Sorting Baghouse (CD-016)

Tertiary Crushing Operations

ES-022a, ES-022b, ES-022c ES-031 CD-022

> ES-021a - ES-021f CD-021

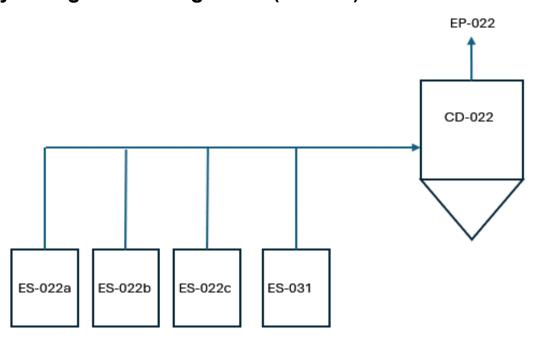
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В			
EMISSION SOURCE DESCRIPTION:		EMISSION SOU									
Tertiary Crusher Sizing Screens				EMISSION SOURCE ID NO: ES-022a&b CONTROL DEVICE ID NO(S): CD-022							
OPERATING SCENARIO 1 OF 1				EMISSION POINT (STACK) ID NO(S): EP-022							
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /		-				
Tertiary sizing screens with dust pickups. See Pf	,	•									
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):									
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)			
Int.combustion engine/generator (Form B2)		=	nishing/printin	,		on (Form B8)	9=/ (: -:	= . ,			
Liquid storage tanks (Form B3)		_ 0	ilos/bins (Form	,	United States						
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-					
MANUFACTURER / MODEL NO.: TBD		1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR					
	S (SUBPARTS	(2). 000			(SUBPARTS?):						
PERCENTAGE ANNUAL THROUGHPUT (%): I	25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25						
				FORMATION I							
0.0.12.0.0	7	SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS				
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		I				
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	(AFTER CONTROLS / LIMITS) Ib/hr tons/yr				
PARTICULATE MATTER (PM)		AP-42	0.1412	0.4126	2.8248	12.3726	0.1412	0.6186			
PARTICULATE MATTER (1 M) PARTICULATE MATTER (1 M) PARTICULATE MATTER (1 M)		AP-42	0.0376	0.1099	0.7525	3.2960	0.0376	0.1648			
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0057	0.0166	0.1140	0.4991	0.0057	0.0250			
SULFUR DIOXIDE (SO2)	A1 -42	0.0037	0.0100	0.1140	0.4331	0.0037	0.0230				
NITROGEN OXIDES (NOx)											
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (VOC)											
LEAD											
OTHER											
	IS AIR POI	I IITANT FI	MISSIONS I	NEORMATION	I FOR THIS S	CURCE	<u> </u>	<u> </u>			
MAZAKOOO	T AIN T OL		T	EXPECTED ACTUAL POTENTIAL EMISSIONS							
		SOURCE OF			(BEFORE CONTROLS / LIMITS) (AFTER						
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)				ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	ID/III	tons/yr	lb/hr	tons/yr			
		<u> </u>	-								
		-	-								
		1									
		<u> </u>	-								
		1									
		1									
TOVIC	ID DOLLII	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLI	DCE.					
TOXIC A	T POLLO	Ī		JRIVIA I ION FO	JK THIS SOU	RCE					
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR			I III III III III III III III III III			h			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/d	ID	/yr				
		<u> </u>	-								
		1	-								
		1	 		 						
		1	 		 						
		-	 		 						
		1			 						
	<u> </u>	1	<u> </u>		<u> </u>						

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9				
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-022a&b						
Tertiary Crusher Sizing Screens		CONTROL DEVICE ID NO(S): CD-022						
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-022						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):								
Tertiary sizing screens with dust pickups. See PFD Figure 3 in Section 3.								
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)				
Ore	tons	1284	N/A					
MATERIALS ENTERING PROCESS - BATCH OPERATION	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)					
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	/R):						
FUEL USED: N/A	TOTAL MAXI	IMUM FIRING RATE (MILLION BTU/HR): N/A						
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	D CAPACITY ANNUAL FUEL USE: N/A						
COMMENTS:								

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В				
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE DESCRIPTION:						EMISSION SOURCE ID NO: ES-022c					
Tertiary Crushing Feed Bin Conveyor				CONTROL DEVICE ID NO(S): CD-022								
OPERATING SCENARIO 1 OF 1				EMISSION POINT (STACK) ID NO(S): EP-022								
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):									
Tertiary crushing operations with dust pickups.	,		•									
E APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):										
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)				
Int.combustion engine/generator (Form B2)		=	nishing/printing	,		on (Form B8)	9=/ (*	,				
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	United States							
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-						
MANUFACTURER / MODEL NO.: TBD	1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR							
	S (SUBPARTS	(2). 000			(SUBPARTS?):							
PERCENTAGE ANNUAL THROUGHPUT (%):	25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25							
				FORMATION I								
	.,	SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS					
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTROLS / LIMITS)					
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr				
PARTICULATE MATTER (PM)		AP-42	0.0029	0.0084	0.0578	0.2533	0.0029	0.0127				
PARTICULATE MATTER (1 MI)		AP-42	0.0029	0.0028	0.0190	0.0832	0.0029	0.0042				
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	AP-42	0.0003	0.0028	0.0028	0.0032	0.0003	0.00042					
SULFUR DIOXIDE (SO2)	A1 -42	0.0001	0.0004	0.0020	0.0123	0.0001	0.0000					
NITROGEN OXIDES (NOx)												
CARBON MONOXIDE (CO)												
VOLATILE ORGANIC COMPOUNDS (VOC)												
LEAD												
OTHER												
	IS AIR POL	I IITANT FI	MISSIONS I	NEORMATION	I FOR THIS S	CURCE	<u> </u>					
TIALANDO	T DE AIR T OL		T	ONS INFORMATION FOR THIS SOURCE REPECTED ACTUAL POTENTIAL EMISSIONS								
		SOURCE OF										
HAZADDONS AID DOLL HTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) Ib/hr tons/vr			ROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	ID/III	tons/yr	lb/hr	tons/yr				
	+	<u> </u>	-									
	+	-	-									
	+											
		1										
	+	<u> </u>	-									
		1										
		1										
TOYIC	AID DOLLII	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLI	DCE.						
TOXIC	T POLLO	SOURCE OF	T T	JRIVIA I ION FO	JK THIS SOU	RCE						
	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS								
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR			1674 10			her				
TOXIC AIR FOLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/d	/yr						
		1										
	+	1	 		 							
	+											
	+											
	+	1			 							
	1	1										
			1									


REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Oper	ate	B9				
EMISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: ES-022c							
Tertiary Crushing Feed Bin Conveyor		CONTROL DEVICE ID NO(S): CD-022						
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID NO(S): EP-022						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Tertiary crushing operations with dust pickups. See PFD Figure 3 in Sec	tion 3.							
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	CAPACITY (UNIT/HR)	LIMITATION(I	UNIT/HR)					
Ore	tons	413	N/A					
	T							
			I					
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY				
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)				
	<u> </u>		<u> </u>					
			<u> </u>					
			1					
			<u>I</u>					
			<u>I</u>					
	<u> </u>		<u> </u>					
	<u> </u>							
MAXIMUM DESIGN (BATCHES / HOUR):								
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/YI	YR):						
FUEL USED: N/A	TOTAL MAXI	IMUM FIRING RATE (MILLION BTU/HR): N/A						
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	D CAPACITY ANNUAL FUEL USE: N/A						
COMMENTS:								

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEC	l/Divi	ision of Air Quality	- Application	on for A	ir Permit to	Constr	uct/Operate				C1
CONTROL DEVICE ID NO:	CD-022		CONTROLS EMISS	SIONS FRO	M WHI	CH EMISSIOI	N SOU	RCE ID NO(S): ES	S-022a/b/c T	ertiary Crusher Si	zing Screens & ES-031
EMISSION POINT (STACK) ID NO(S):	EP-022		POSITION IN SERI	ES OF CON	NTROLS	3		NO.	. 1 OF	F 1 UNI	тs	
OPERATING	SCENARIO:											,
1 OF	1			P.E. SEAL	REQU	IRED (PER 2	2q .0112	2)? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:												
Schust 2 module, size 1015, Mod	el 168, Pul	se Je	et Dust Collector	in a singl	le conf	figuration.						
A solid state timer provides sequ	ential pulsi	ing c	of the air valves.									
See control device PFD on the ne	xt page.	-										
POLLUTANTS COLLECTED:				PM	_	PM ₁₀	_	PM _{2.5}	_			
DEFENDE CONTROL EMPONON DATE (5/115)			0.05		0.70		0.40				
BEFORE CONTROL EMISSION RATE (I	_B/HR):			2.95	_	0.79	-	0.12				
CAPTURE EFFICIENCY:				95	%	95	%	95	%	%		
574 TOTAL ETT 10.E.10 1.					-~		- ^~		-~ —			
CONTROL DEVICE EFFICIENCY:				99	%	99	%	99	%	%		
						,	_					
CORRESPONDING OVERALL EFFICIEN	NCY:			94.05	%	94.05	%	94.05	%	%		
EFFICIENCY DETERMINATION CODE.						4						
EFFICIENCY DETERMINATION CODE:				1	_	1	-	1				
TOTAL AFTER CONTROL EMISSION R.	ATE (LB/HR):			0.028		0.008		0.001				
		_	0411050	✓ YES								
PRESSURE DROP (IN H ₂ 0): MIN: -10 BULK PARTICLE DENSITY (LB/FT ³): 90	MAX: -20		GAUGE?		MDEDA	NO NO	MINIO		MAY 11E			
POLLUTANT LOADING RATE:	LB/HR		√ GR/FT ³	INLET TEMPERATURE (°F): MIN 0								
INLET AIR FLOW RATE (ACFM):		900				ING TEMP (°			MAX 115			
NO. OF COMPARTMENTS: 2			PER COMPARTMEN		LIVAI	ING ILWII (1	TH OF BAG	(INI): 168			
NO. OF CARTRIDGES: 300			CE AREA PER CAR		T ²): 22			ETER OF BA				
TOTAL FILTER SURFACE AREA (FT ²):			AIR TO CLOTH RA		. ,		Di/ tivi	LILITOI DI	10 (114.). 0			
DRAFT TYPE: INDUCED/NE			FORCED/POSITIVI			FILTER MA	ATERIA	L:	WOVEN	✓ FEL	TED	
DESCRIBE CLEANING PROCEDURES:								_			E SIZE DISTRIBUTIO	ON .
✓ AIR PULSE			SONIC					SIZE	WEIG	SHT %	CI	UMULATIVE
REVERSE FLOW	j		SIMPLE BAG COLI	_APSE			(M	ICRONS)	OF T	OTAL		%
☐ MECHANICAL/SHAKER			RING BAG COLLAI	PSE				0-1		0		0
OTHER:							1-10			58		58
DESCRIBE INCOMING AIR STREAM: Fa				s and open	areas in	to the unit	10-25		42			100
which then intermittently purges to return	material back	onto	the cpnveyor.					25-50		0		100
								50-100		0		100
								>100		0		100
											TOTAL = 10	00
ON A SEPARATE PAGE, ATTACH A DIA	AGRAM SHOW	NING	THE RELATIONS	HIP OF THE	CONTI	ROL DEVICE	TOITS	S EMISSION	SOURCE	E(S):		
COMMENTS:												

Tertiary Sizing Screen Baghouse (CD-022)

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Oper	rate		В			
EMISSION SOURCE DESCRIPTION:		EMISSION SOUI	,i -								
Stockpile Feed Conveyor #1				CONTROL DEVI							
OPERATING SCENARIO 1 OF 1				CONTROL DEVICE ID NO(S): CD-022 EMISSION POINT (STACK) ID NO(S): EP-022							
DESCRIBE IN DETAILTHE EMISSION SOURCE	CE PROCESS (ATTACH FLOV	V DIAGRAM):								
Plant stockpile feed conveyor with dust pickups											
APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):									
Coal,wood,oil, gas, other burner (Form B1)		•	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)			
Int.combustion engine/generator (Form B2)		nishing/printing	•		on (Form B8)	•	,			
Liquid storage tanks (Form B3)	,	•	ilos/bins (Form	• ,	Other (Fo						
START CONSTRUCTION DATE: TBD			DATE MANUFACTURED: TBD								
MANUFACTURER / MODEL NO.: TBD		1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR					
	S (SUBPARTS	i?): 000			(SUBPARTS?):						
PERCENTAGE ANNUAL THROUGHPUT (%):	25 MAR-N	//AY 25	JUN-AUG	· / =	SEP-NOV 25						
				FORMATION							
		SOURCE OF		TED ACTUAL		POTENTIAL I	EMISSIONS				
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		AP-42	0.0032	0.0112	0.0641	0.2808	0.0032	0.0140			
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0011	0.0037	0.0211	0.0923	0.0011	0.0046			
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0002	0.0006	0.0032	0.0138	0.0002	0.0007			
SULFUR DIOXIDE (SO2)	7	0.0002	0.0000	0.0002	0.0100	0.0002	0.0001				
NITROGEN OXIDES (NOx)											
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (VOC)			1								
LEAD											
OTHER											
	US AIR POL	LUTANT EI	MISSIONS I	NFORMATION	V FOR THIS S	OURCE					
	1	SOURCE OF EXPECTED ACTUAL			1	POTENTIAL I	EMISSIONS				
		EMISSION			(REEORE CONTE		POLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	(BEFORE CONTROLS / LIMITS) Ib/hr tons/yr		(AFTER CONTROLS / LIMITS) Ib/hr tons/yr				
III DECINE	GAS IIG.	17101011	15/111	torior yr	15/111	torioryi	15/11	torioryi			
					1						
					1						
TOXIC	AIR POLLU	TANT EMIS	SIONS INFO	DRMATION FO	OR THIS SOU	RCE					
		SOURCE OF						0110			
	EX	EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIN				SNS					
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	ay	lb	/yr			
						,					

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Ope	rate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-031			
Stockpile Feed Conveyor #1		CONTROL DEVICE ID NO(S):	CD-022			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-022			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Plant stockpile feed conveyor with dust pickups. See PFD Figure 3 in Se	ection 3.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CADACITY		
TYPE	UNITS	==				
				JNII/HK)		
Ore	tons	458	N/A			
	+					
	1					
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)		
MAXIMUM DESIGN (BATCHES / HOUR):	1	<u> </u>	<u> </u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R)·				
		,	T. 1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
FUEL USED: N/A	1	MUM FIRING RATE (MILLION B	•			
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTEL	CAPACITY ANNUAL FUEL USI	:: N/A			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-021a		
Tertiary Crusher Feed Bin				CONTROL DEV		CD-021		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-021	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	, ,	- ()		
Tertiary crushing operations with dust picku		•						
APPROPRIATE FORM B1-B9 ON THE FO	OLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	*		nishing/printin	•		ion (Form B8)	•	,
Liquid storage tanks (Form B3)	,	√ Storage s	ilos/bins (Form	n B6)	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:		DAY/WK 52 W	K/YR	
	NSPS (SUBPARTS	S?): OOO			(SUBPARTS?):		·	
PERCENTAGE ANNUAL THROUGHPUT (•	25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25		
	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE		
		SOURCE OF		TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0256	0.0748	0.5118	2.2415	0.0256	0.1121
PARTICULATE MATTER<10 MICRONS (PM ₁)	AP-42	0.0121	0.0354	0.2420	1.0602	0.0121	0.0530
PARTICULATE MATTER<2.5 MICRONS (PM		AP-42	0.0018	0.0054	0.0367	0.1605	0.0018	0.0080
SULFUR DIOXIDE (SO2)	2.0)							
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC	3)							
LEAD	7							
OTHER								
	DOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF		TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				,				,.
TOX	IC AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	ΓV	DECTED ACTUAL	EMICCIONE AE	TER CONTRO	I C / I INNITATI	ONE
		EMISSION	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	Ib	o/yr
						-		

EMISSION SOURCE (STORAGE SILO/BINS)

PTION:			EMISSION S	OURCE ID NO: ES-021a
			CONTROL D	EVICE ID NO(S): CD-021
1 OF 1			EMISSION P	OINT(STACK) ID NO(S): EP-021
		ith dust p	ickups. See PFD Fig	ure 3 in Section 3.
			DENSITY OF MATE	RIAL (LB/FT3): 156
CUBIC FEET: 3,000	 			
HEIGHT:	DIAMETER:	(OR)	LENGTH: 30	WIDTH: 30 HEIGHT: 30
OUGHPUT (TONS)	ACTUAL:	2,413,12	6 MAXIMUM D	ESIGN CAPACITY: 3,617,880
			LLED	FILLED FROM
	BELT CONVEYOR			RAILCAR TRUCK STORAGE PILE OTHER: Upstream Process Units
RIAL UNLOADED FRO	DM SILO? Conveyor			
RATE OF MATERIAL (TONS/HR): 413			
NG RATE OF MATER	IAL (TONS/HR): 413			
	CUBIC FEET: 3,000 HEIGHT: DUGHPUT (TONS) ILLED Tertiary crusher RIAL UNLOADED FRO	CUBIC FEET: 3,000 HEIGHT: DIAMETER: DUGHPUT (TONS) ACTUAL: ILLED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:	CUBIC FEET: 3,000 HEIGHT: DIAMETER: (OR) OUGHPUT (TONS) ACTUAL: 2,413,120 SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Tertiary crusher RIAL UNLOADED FROM SILO? Conveyor	TOF 1 ROCESS (ATTACH FLOW DIAGRAM): conveyed to the feed bin which is controlled with dust pickups. See PFD Figure DENSITY OF MATE CUBIC FEET: 3,000 HEIGHT: DIAMETER: DIAMETER: DIAM

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-021b&c		
Belt Feeder - Tertiary Crusher #1/#2				CONTROL DEVI		CD-021		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-021	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):				-	
Tertiary crushing operations with dust pickups. S	,							
E APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2)		=	nishing/printing	,		on (Form B8)	9 (= . ,
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): I		25 MAR-N	//AY 25	JUN-AUG		SEP-NOV 25		
				FORMATION I				
0.0.2.0.	7	SOURCE OF		TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		1	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0029	0.0084	0.0578	0.2533	0.0029	0.0127
PARTICULATE MATTER (1 M) PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		AP-42	0.0029	0.0028	0.0370	0.0832	0.0029	0.0042
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0003	0.0028	0.0028	0.0032	0.0003	0.00042
SULFUR DIOXIDE (SO2)		A1 -42	0.0001	0.0004	0.0020	0.0123	0.0001	0.0000
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	MISSIONS I	NFORMATION	I FOR THIS S	CURCE		<u> </u>
MAZANDOO	T AIN TOL	ī	ī		1		TMICCIONS	
		SOURCE OF				EMISSIONS	TER CONTROLS / LIMITS)	
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTE	1		1
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	+		-					
	-							
	+							
	+		-					
			+			-		
	+							
TOVIC	UD BOLLU	L TANT EMIS	L SIONS INE	DRMATION FO		DCE.		
TOXIC	T POLLO			JRIVIA I ION FO	ik inis sooi	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	11- /-1			h
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/da	ау	ID	/yr
	+		-					
	+							
	+	-	-					
	 	 	 				1	
	+	-	 					
	+	 						
	1	<u> </u>	1		<u> </u>		<u> </u>	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-021b&c	
Belt Feeder - Tertiary Crusher #1/#2		CONTROL DEVICE ID NO(S):	CD-021	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-021	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Tertiary crushing operations with dust pickups. See PFD Figure 3 in Sec	tion 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Ore	tons	413	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)
HAVING PERIOD (DATE (HOUE)				
MAXIMUM DESIGN (BATCHES / HOUR): REQUESTED LIMITATION (BATCHES / HOUR):	/DATCHES/V	D).		
· · · · · · · · · · · · · · · · · · ·	(BATCHES/Y		THUES ALIA	
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		MUM FIRING RATE (MILLION B' CAPACITY ANNUAL FUEL USE		
COMMENTS:	INLQUESTEE	CAFACITT ANNOALT OLL OSI	N/A	

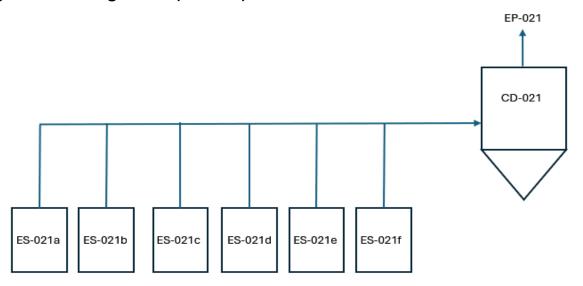
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	CDEQ/Divisio	n of Air Quality	y - Applicatioı	n for Air Permit t	o Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-021d&e			
Tertiary Cone Crusher #1/#2				CONTROL DEV	ICE ID NO(S):	CD-021			
OPERATING SCENARIO 1 OF 1				EMISSION POIN	IT (STACK) ID NO	O(S):	EP-021		
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):	•	•				
Tertiary crushing operations with dust pickups.	See PFD Figure	e 3 in Section 3							
APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form B1)		Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (For	rm B7)	
Int.combustion engine/generator (Form B2)	ı		Coating/finishing/printing (Form B5)						
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	United (Fo	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBE)				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR		
	S (SUBPARTS	,			(SUBPARTS?):_				
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N		JUN-AUG		SEP-NOV 25			
CRITERIA	AIR POLL		SSIONS IN	FORMATION	FOR THIS SC	URCE			
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0248	0.0724	0.4956	2.1707	0.0248	0.1085	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0112	0.0326	0.2230	0.9768	0.0112	0.0488	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0017	0.0049	0.0335	0.1465	0.0017	0.0073	
SULFUR DIOXIDE (SO2)							ļ		
NITROGEN OXIDES (NOx)							ļ		
CARBON MONOXIDE (CO)							ļ		
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER	10 415 501		MOOLONO	NEODIA TIO	 				
HAZARDO	JS AIR PUL	T	7	NFORMATIO	N FOR THIS S				
		SOURCE OF		TED ACTUAL		POTENTIAL I	ı		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT	1		ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
	-				1		ļ		
	-				1		ļ		
	+				1		ļ		
	1								
	_				-				
					<u> </u>				
TOVIC	ND BOLLU	TANT EMIC	CIONIC INIE			IDCE			
TOXIC	T POLLU	I		ORMATION F	JK IHIS SUU	RCE			
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	lav	lh.	o/yr	
TOXIC AIR FOLLUTANT	CAS NO.	FACTOR		ID/III	10/0	iay	ID.	7 yı	
	+	1			1		\vdash		
	1	1			+		 		
	1	1			+		 		
		1					 		
	1	+					-		
Attaches and (4) analysis and adoption		(O) in direct - "		de deselvates :	la manus la lina la co	h	a control of a control	- \ d d	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-021d&e	
Tertiary Cone Crusher #1/#2		CONTROL DEVICE ID NO(S):	CD-021	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-021	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Tertiary crushing operations with dust pickups. See PFD Figure 3 in Sect	ion 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Ore	tons	413	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION) Al	MAX. DESIGN	REQUESTED	CADACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	
11112	ONTO	CALACITI (CIVITIDATOTI)	ENVITATION (OF	WIII/DATOII)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:	•			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	/ - Applicatio	n for Air Permit t	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-021f		
Tertiary Crusher Product Conveyor				CONTROL DEV	ICE ID NO(S):	CD-021		
OPERATING SCENARIO 1 OF 1					NT (STACK) ID NO	O(S):	EP-021	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	,			
Tertiary crushing operations with dust picku								
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwork	king (Form B4	.)	Manuf. o	f chemicals/coa	atings/inks (Fo	orm B7)
Int.combustion engine/generator (Form	B2)	Coating/fir	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage si	ilos/bins (Forn	n B6)	Other (Formula) Other (Formula)	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	?): 000		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-M	MAY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0029	0.0084	0.0578	0.2533	0.0029	0.0127
PARTICULATE MATTER<10 MICRONS (PM11	0)	AP-42	0.0009	0.0028	0.0190	0.0832	0.0009	0.0042
PARTICULATE MATTER<2.5 MICRONS (PM2	2.5)	AP-42	0.0001	0.0004	0.0028	0.0125	0.0001	0.0006
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER		<u> </u>						
HAZARL	DOUS AIR POL		T		N FOR THIS S			
		SOURCE OF	EXPEC	TED ACTUAL	POTENTIAL EMISSIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
					ļ			
					1		<u> </u>	
							<u> </u>	
					+			
								
					+		 	
		<u> </u>			+		 	
TOY	IC AIR POLLU	L TANT FMISS	SIONS INFI	ORMATION F	OR THIS SOL	IRCE		L
1000	I							
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO)LS / LIMITATI	IONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	lav	lt	o/yr
						,		
					1			
					İ			


REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate									
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-021f						
Tertiary Crusher Product Conveyor		CONTROL DEVICE ID NO(S):	CD-021						
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-021						
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):									
Tertiary crushing operations with dust pickups. See PFD Figure 3 in Sec	tion 3.								
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY					
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)					
Ore	tons	413	N/A						
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED						
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)					
WAYNER PERION (NATOUES (MOUE)									
MAXIMUM DESIGN (BATCHES / HOUR):	(BATCHES/Y	D).							
REQUESTED LIMITATION (BATCHES / HOUR):		,	THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS						
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		MUM FIRING RATE (MILLION B' CAPACITY ANNUAL FUEL USE							
COMMENTS:	INEQUESTEE	CAFACITT ANNOALT OLL OSI	N/A						

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate								C1				
CONTROL DEVICE ID NO: CD-	-021	CONTROLS EMISS	SIONS FROM	л WHICH	H EMISSIO	N SOUF	RCE ID NO(S):	ES-021a	through ES	S-021f Tertiary Crusher Bu	uilding
EMISSION POINT (STACK) ID NO(S): EP-	021	POSITION IN SERI	ES OF CON	TROLS			NO.	. 1	OF	1 UNITS		
OPERATING SCENA	ARIO:											
1 OF 1			P.E. SEAL	REQUIF	RED (PER 2	2q .0112)? 🗸	YES			NO	
DESCRIBE CONTROL SYSTEM:					,		<u> </u>				-	
Schust 2 module, size 1015, Model 16 A solid state timer provides sequentia See control device PFD on the next pa	l pulsing		_	e config	guration.							
POLLUTANTS COLLECTED:			PM		PM ₁₀	_	PM _{2.5}	=		_		
BEFORE CONTROL EMISSION RATE (LB/HR)):		1.12		0.50	_	0.08	-		_		
CAPTURE EFFICIENCY:			95	%	95	_%	95	%		%		
CONTROL DEVICE EFFICIENCY:			99	%	99	_%	99	_%		%		
CORRESPONDING OVERALL EFFICIENCY:			94.05	%	94.05	_%	94.05	_%		%		
EFFICIENCY DETERMINATION CODE:			1		1	_	1	-		_		
TOTAL AFTER CONTROL EMISSION RATE (L			0.011	<u></u>	0.005		0.0007					
	AX: -20	GAUGE?	✓ YES	L	NO							
BULK PARTICLE DENSITY (LB/FT³): 90			INLET TEM			MIN 0		MAX 1				
	B/HR	✓ GR/FT ³	OUTLET T					MAX 1	115			
INLET AIR FLOW RATE (ACFM):	40,800		FILTER OF	'ERATIN	IG TEMP (F): Amb	ient					
		PER COMPARTMEN				LENG	TH OF BAG	(IN.): 1	68			
NO. OF CARTRIDGES: 300 FILT	TER SURFA	CE AREA PER CAR	≀TRIDGE (FT	「²): 22		DIAME	TER OF BA	AG (IN.)): 6			
TOTAL FILTER SURFACE AREA (FT ²): 6,600		AIR TO CLOTH RA	TIO: 6.18									
DRAFT TYPE:	E 🗌	FORCED/POSITIVI	Ε		FILTER M	ATERIA	L:	WOVE	EN ✓	FELTED		
DESCRIBE CLEANING PROCEDURES:									P	ARTICLE SIZ	E DISTRIBUTION	
✓ AIR PULSE		SONIC					SIZE	W	EIGHT %		CUMULATIVE	
REVERSE FLOW		SIMPLE BAG COLI	LAPSE			(MI	CRONS)	0	F TOTAL		%	
☐ MECHANICAL/SHAKER		RING BAG COLLAI	PSE				0-1		0		0	
OTHER:							1-10		58		58	
DESCRIBE INCOMING AIR STREAM: Fan draw			s and open a	reas into	the unit		10-25		42		100	
which then intermittently purges to return material	ai back onic	trie cpriveyor.					25-50		0		100	
							50-100		0		100	
							>100		0		100	
											TOTAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM	M SHOWING	3 THE RELATIONS	IP OF THE	CONTRO	OL DEVICE	TO ITS	EMISSION	SOUR	RCE(S):			
COMMENTS:												

Tertiary Crusher Baghouse (CD-021)

Plant Feed Stockpile Operations

ES-035 ES-040a - ES-040f CD-040

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-035		
Stockpile Feed Conveyor #2				CONTROL DEV		CD-040		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID N	O(S):	EP-040	
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()		
Plant stockpile feed conveyor with dust pick		•						
APPROPRIATE FORM B1-B9 ON THE FO	OLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Under (Fe	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	3?): 000		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SC	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0032	0.0112	0.0641	0.2808	0.0032	0.0140
PARTICULATE MATTER<10 MICRONS (PM1	0)	AP-42	0.0011	0.0037	0.0211	0.0923	0.0011	0.0046
PARTICULATE MATTER<2.5 MICRONS (PM	2.5)	AP-42	0.0002	0.0006	0.0032	0.0138	0.0002	0.0007
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER								
HAZARI	DOUS AIR POL	LUTANT EI	MISSIONS I	<u>INFORMATIOI</u>	N FOR THIS S	SOURCE		
		SOURCE OF	EXPEC	TED ACTUAL	POTENTIAL EMISSIONS			
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOV	IC AID DOLL III	TANT CMIC	CIONIC INF			IDOE		
10x	IC AIR POLLU		T	JRIMATION FO	JK IHIS SUU	RUE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/c	lav	lh.	o/yr
TOXIC AIR FOLLUTAIN	CAS NO.	TACTOR		ID/III	ID/C	iay	II.	<i>л</i> у і
			<u> </u>					
		1						
			<u> </u>					
					1			

	sion of Air Quality - Application f	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-035	
Stockpile Feed Conveyor #2		CONTROL DEVICE ID NO(S):	CD-040	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-040	
DESCRIBE IN DETAIL THE PROCESS (ATTACH F Plant stockpile feed conveyor with dust pickups. See	· ·			
MATERIALS ENTERING PROCESS - CO	ONTINUOUS PROCESS	MAX. DESIGN	REQUESTED	CADACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Ore	tons	458	N/A	· · · · · · · · · · · · · · · · · · ·
Ole	tons	436	IN/A	
MATERIALS ENTERING PROCESS -	BATCH OPERATION	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (U	
=				,,
_				
_				
MAXIMUM DESIGN (BATCHES / HOUR):	<u> </u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	i i	MUM FIRING RATE (MILLION B	TIT/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:	1,75,4050155	S NOTE I VIETO OLL OUL		
	P NEX SECTION AND ADDRESS OF THE PROPERTY OF T			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU				
Stockpile Stacking Conveyor				CONTROL DEV		CD-040		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID N	O(S):	EP-040	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()		
Plant feed stockpile operations with dust pic		•						
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Fe	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	ISPS (SUBPARTS	3?): 000		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SC	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0032	0.0112	0.0641	0.2808	0.0032	0.0140
PARTICULATE MATTER<10 MICRONS (PM1)	₀)	AP-42	0.0011	0.0037	0.0211	0.0923	0.0011	0.0046
PARTICULATE MATTER<2.5 MICRONS (PM2	1.5)	AP-42	0.0002	0.0006	0.0032	0.0138	0.0002	0.0007
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD								
OTHER								
HAZARI	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	SOURCE		
		SOURCE OF EXPECTED ACTUAL		TED ACTUAL	POTENTIAL EMISSIONS			
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>
TOXI	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
		EMISSION			T		·	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/c	lay	lb.	o/yr
			-				-	
			-					
			 				 	
			1					

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate						
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-040a			
Stockpile Stacking Conveyor		CONTROL DEVICE ID NO(S):	CD-040			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-040			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):						
Plant feed stockpile operations with dust pickups. See PFD Figure 3 in S	ection 3.					
		· · · · · · · · · · · · · · · · · · ·				
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE		MAX. DESIGN	REQUESTED			
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I			
Ore	tons	458	N/A			
	 					
	 					
	 					
	 	1				
		1				
		1	-			
MATERIALS ENTERING PROCESS - BATCH OPERATION	N	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)		
	<u> </u>					
	<u> </u>					
	 					
	 					
	<u> </u>					
	 					
	 	-				
THE PERSON (STERLIES (HOUR)	<u> </u>	<u> </u>				
MAXIMUM DESIGN (BATCHES / HOUR):	(BATCHES/Y	/D\.				
REQUESTED LIMITATION (BATCHES / HOUR):		•	FL// ID), 00			
FUEL USED: Natural Gas MAX. CAPACITY HOURLY FUEL USE: 30 MMBtu/hr		IMUM FIRING RATE (MILLION BT D CAPACITY ANNUAL FUEL USE				
COMMENTS:	NEQUEU : E	/ OAI / OIL I / NINITO/IE I OLE SSL	19// (

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU				
Plant Feed Stockpile				CONTROL DEV	ICE ID NO(S):	CD-040		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	D(S):	EP-040	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	,	,		
Plant feed stockpile operations with dust pic	kups. See PFD Fig	gure 3 in Section	n 3.					
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	0	nishing/printin	,		ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Formula) Other (Formula)	orm B9)		
START CONSTRUCTION DATE: TBD			1	FACTURED: TBD				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR	
	ISPS (SUBPARTS	,			(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9		25 MAR-N		JUN-AUG		SEP-NOV 25		
CRITE	RIA AIR POLL		_		FOR THIS SO			
		SOURCE OF		TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONTI	1		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0284	0.0994	0.5675	2.4857	0.0284	0.1243
PARTICULATE MATTER<10 MICRONS (PM ₁₀	,	AP-42	0.0134	0.0470	0.2684	1.1757	0.0134	0.0588
PARTICULATE MATTER<2.5 MICRONS (PM ₂	2.5)	AP-42	0.0020	0.0071	0.0406	0.1780	0.0020	0.0089
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO)								
` '	<u> </u>	1	-					
VOLATILE ORGANIC COMPOUNDS (VOC) LEAD)							<u> </u>
OTHER								
	OOUS AIR POL	I IITANT FI	MISSIONS I	NFORMATIO	N FOR THIS S	COURCE		
777 (27 17)	1	SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS	
		EMISSION					1	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	57.0.1.0.	17101011	12/111	10.10/ y.		10110791		10.10, y.
						İ		
TOXI	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
	EMISSION			_		1		
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	Ib	o/yr
		ļ						
		-						
		 	-					
	<u> </u>	l .	1		1		l	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application fe	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-040b	
Plant Feed Stockpile		CONTROL DEVICE ID NO(S):	CD-040	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-040	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Plant feed stockpile operations with dust pickups. See PFD Figure 3 in S	ection 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Ore	tons	458	N/A	
			-	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
	 			
	 			
	<u> </u>			
	 			
	1			
	1			
MAXIMUM DESIGN (BATCHES / HOUR):	<u>. I</u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R)·		
FUEL USED: Natural Gas	,	MUM FIRING RATE (MILLION B	TII/HD)- 30	
MAX. CAPACITY HOURLY FUEL USE: 30 MMBtu/hr		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit t	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-040c&d		
Plant Feed Belt Feeder #1/#2				CONTROL DEV	ICE ID NO(S):	CD-040		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID N	O(S):	EP-040	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•	,	,		
Plant feed stockpile operations with dust pic	kups. See PFD Fig	gure 3 in Section	n 3.					
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Fellow)	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
	NSPS (SUBPARTS	3?): 000			(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9		25 MAR-N		JUN-AUG		SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	<u>SSIONS IN</u>	FORMATION	FOR THIS SC	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)		ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0032	0.0112	0.0641	0.2808	0.0032	0.0140
PARTICULATE MATTER<10 MICRONS (PM ₁₀	,,	AP-42	0.0011	0.0037	0.0211	0.0923	0.0011	0.0046
PARTICULATE MATTER<2.5 MICRONS (PM ₂	1.5)	AP-42	0.0002	0.0006	0.0032	0.0138	0.0002	0.0007
SULFUR DIOXIDE (SO2)							├ ──	
NITROGEN OXIDES (NOx)							├ ──	
CARBON MONOXIDE (CO)					1			
VOLATILE ORGANIC COMPOUNDS (VOC)				1			
LEAD							<u> </u>	
OTHER HAZARI	OOUS AIR POL	LUTANTE	MICCIONIC	NEODMATIO	N FOR THIS G	COURCE		
HAZAKL	JOUS AIR POL	1			T TOK THIS S			
		SOURCE OF	EXPECTED ACTUAL		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
UAZARROUG AIR ROLLUTANT	040 110	EMISSION		NTROLS / LIMITS)		1		1
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
					1		 	
					1		 	
							 	
TOX	C AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	IRCE		
		SOURCE OF	ΓV	DECTED ACTUA	L EMICCIONE AE	TER CONTRO	LC / LIMITATI	ONE
		EMISSION	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/c	lay	lb	o/yr
					1			
					1			
							<u> </u>	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-040c&d	
Plant Feed Belt Feeder #1/#2		CONTROL DEVICE ID NO(S):	CD-040	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-040	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Plant feed stockpile operations with dust pickups. See PFD Figure 3 in S	Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	JNIT/HR)
Ore	tons	458	N/A	
			1	
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
				•
			İ	
MAXIMUM DESIGN (BATCHES / HOUR):	(DATOLIES :	D)		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	,		
FUEL USED: Natural Gas		MUM FIRING RATE (MILLION B		
MAX. CAPACITY HOURLY FUEL USE: 30 MMBtu/hr COMMENTS:	REQUESTEL	CAPACITY ANNUAL FUEL US	:: N/A	

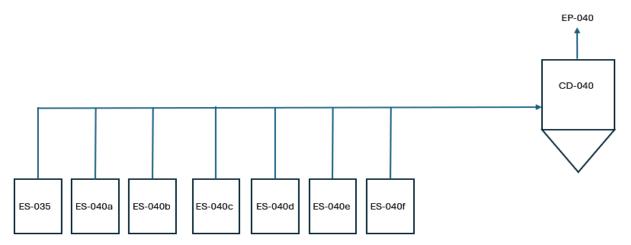
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-040e				,i -
Stockpile Discharge Conveyor				CONTROL DEVI		CD-040		
OPERATING SCENARIO 1 OF 1				1	T (STACK) ID NO	O(S):	EP-040	
DESCRIBE IN DETAILTHE EMISSION SOUR	CE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Plant feed stockpile operations with dust pickup		•						
APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1		•	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2	· ·)		nishing/printin	•		on (Form B8)	•	,
Liquid storage tanks (Form B3)	,	•	ilos/bins (Forn	• ,	U Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD				
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	PS (SUBPARTS	S?); OOO			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG		SEP-NOV 25		
				FORMATION I				
		SOURCE OF		TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0027	0.0094	0.0535	0.2342	0.0027	0.0117
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0009	0.0031	0.0176	0.0770	0.0009	0.0038
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0001	0.0005	0.0026	0.0115	0.0001	0.0006
SULFUR DIOXIDE (SO2)		7	0.0001	0.0000	0.0020	0.01.0	0.000.	0.000
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD		1						
OTHER								
	US AIR POL	LUTANT EI	MISSIONS I	NFORMATION	FOR THIS S	OURCE		
	1	SOURCE OF	T	TED ACTUAL	<u> </u>	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TIPEPARE GOOD PART GEES TPART	GAO NO.	17101011	15/111	101107 y1	15/111	torioryi	15/11	torioryi
TOXIC	AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		I						
		SOURCE OF EMISSION	EX	PECTED ACTUAL	. EMISSIONS AF	TER CONTRO	LS / LIMITATIO	SNS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	/yr
						•		

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate						
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-040e			
Stockpile Discharge Conveyor		CONTROL DEVICE ID NO(S):	CD-040			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-040			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Plant feed stockpile operations with dust pickups. See PFD Figure 3 in S	Section 3.					
Trail tood stootpile operations man dust plottage.	Colloit C.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	UNIT/HR)		
Ore	tons	382	N/A			
	<u> </u>					
	<u> </u>					
	<u> </u>					
	<u> </u>					
MATERIAL O ENTERINO PROCESSO - DATOU OPERATIO	2)	MAY DEGICAL	2501150750	CARACITY		
MATERIALS ENTERING PROCESS - BATCH OPERATION TYPE	UNITS	MAX. DESIGN CAPACITY (UNIT/BATCH)	REQUESTED LIMITATION (UI			
11rL	UNITO	CAPACITI (UNIT/DATOTI)	LIMITATION	NII/DATCII)		
	+					
	†					
	†					
			-			
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	′R):				
FUEL USED: Natural Gas	TOTAL MAXI	IMUM FIRING RATE (MILLION B	ГU/HR): 30			
MAX. CAPACITY HOURLY FUEL USE: 30 MMBtu/hr		CAPACITY ANNUAL FUEL USE				
COMMENTS:						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit t	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU				
DMS Feed Conveyor				CONTROL DEV	ICE ID NO(S):	CD-040		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-040	
DESCRIBE IN DETAILTHE EMISSION SO	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /	- ()		
Plant feed stockpile operations with dust pic		•						
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4	-)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	√ Other (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE		
		SOURCE OF	EXPEC.	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION	-	NTROLS / LIMITS)	(BEFORE CONT		1	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0027	0.0094	0.0535	0.2342	0.0027	0.0117
PARTICULATE MATTER<10 MICRONS (PM ₁	0)	AP-42	0.0009	0.0031	0.0176	0.0770	0.0009	0.0038
PARTICULATE MATTER<2.5 MICRONS (PM		AP-42	0.0001	0.0005	0.0026	0.0115	0.0001	0.0006
SULFUR DIOXIDE (SO2)	2.37							
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,						1	
OTHER							†	İ
	OOUS AIR POL	LUTANT EI	MISSIONS	INFORMATIO	N FOR THIS S	SOURCE		
		SOURCE OF	EXPEC.	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
								.,
							1	
							1	
							1	
							1	
							1	
TOX	IC AIR POLLU	TANT EMIS	SIONS INF	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EV	DECTED ACTUA	I EMISSIONS AE	TER CONTRO	N S / LIMITATI	IONIS
		EMISSION		PECTED ACTUA	L EIVIISSIONS AF	TER CONTRO)LS / LIMITATI	IONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr


	- Application for	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:	ļ	EMISSION SOURCE ID NO:	ES-040f	
DMS Feed Conveyor		CONTROL DEVICE ID NO(S):	CD-040	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-040	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Plant feed stockpile operations with dust pickups. See PFD Figure 3 in S	ection 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Ore	tons	382	N/A	
			1	
			<u> </u>	
	<u> </u>			
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
ТҮРЕ	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
	 		<u> </u>	
	 		 I	
	+		<u> </u>	
	-			
	+			
	+			
	+		 I	
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/YI	R)·	-	
FUEL USED: Natural Gas		MUM FIRING RATE (MILLION BT	TII/HR): 30	
MAX. CAPACITY HOURLY FUEL USE: 30 MMBtu/hr		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ	Division of Air Quality	- Application for A	ir Permit to (Construct/Operate	9			C1
CONTROL DEVICE ID NO:	CD-040	CONTROLS EMIS	SIONS FROM WHI	CH EMISSION	N SOURCE ID NO	(S): E	S-035, ES-	040a throเ	igh ES-040f
EMISSION POINT (STACK) ID NO	O(S): EP-040	POSITION IN SER	RIES OF CONTROLS	3	NO	. 10	DF 1 L	JNITS	
OPERA	TING SCENARIO:								
	1 OF 1		P.E. SEAL REQU	IRED (PER 2	q .0112)?	YES		NO	
DESCRIBE CONTROL SYSTEM:			•	· · · · · · · · · · · · · · · · · · ·					
Schust 2 module, size 1215,	Model 168. Puls	e Jet Dust Collecto	r in a single conf	iguration.					
A solid state timer provides				0					
See control device PFD on t		0							
POLLUTANTS COLLECTED:			PM	PM_{10}	PM _{2.5}				
BEFORE CONTROL EMISSION R	RATE (LB/HR):		0.87	0.37	0.06				
CARTURE EFFICIENCY			05 0/	05	0/ 05	0/	0	,	
CAPTURE EFFICIENCY:			95 %	95	% <u>95</u>	_%		%	
CONTROL DEVICE EFFICIENCY:	:		99 %	99	% 99	%	9	%	
CORRESPONDING OVERALL EF	FICIENCY:		94.05 %	94.05	% 94.05	%	9	%	
EFFICIENCY DETERMINATION C	CODE:		1	1	1				
TOTAL AFTER CONTROL EMISS	ION DATE (LB/HD):		0.008	0.003	0.0005				
TOTAL AFTER CONTROL EINISS	SION RATE (LB/HR).			0.003	0.0005				
PRESSURE DROP (IN H ₂ 0): MIN	N: -10 MAX: -20	GAUGE?	✓ YES	NO					
BULK PARTICLE DENSITY (LB/F			INLET TEMPERA			MAX 11			
POLLUTANT LOADING RATE:	LB/HR	✓ GR/FT ³	OUTLET TEMPE	, ,		MAX 11	5		
INLET AIR FLOW RATE (ACFM):	43,3		FILTER OPERAT	ING TEMP (°	1				
NO. OF COMPARTMENTS: 2	NO. OF BA	GS PER COMPARTME	NT: 180		LENGTH OF BAG	6 (IN.): 16	8		
NO. OF CARTRIDGES: 360		RFACE AREA PER CAI			DIAMETER OF B	AG (IN.):	6		
TOTAL FILTER SURFACE AREA	(FT ²): 7,920	AIR TO CLOTH RA	ATIO: 5.47						
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE		ATIO: 5.47	FILTER MA		WOVEN	1	ELTED	
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE	AIR TO CLOTH RA	ATIO: 5.47	FILTER MA	ATERIAL:	WOVEN	N V F	TRIBUTION	
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE	AIR TO CLOTH RA FORCED/POSITIV SONIC	ATIO: 5.47 /E	FILTER MA	ATERIAL:	WOVEN PARTIC	N	TRIBUTION	ULATIVE
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDU AIR PULSE REVERSE FLOW	(FT ²): 7,920 ED/NEGATIVE URES:	AIR TO CLOTH RA FORCED/POSITIV SONIC SIMPLE BAG COL	ATIO: 5.47 /E .LAPSE	FILTER MA	SIZE (MICRONS)	WOVEN PARTIC	N F LE SIZE DIS IGHT % TOTAL	TRIBUTION	%
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDU AIR PULSE REVERSE FLOW MECHANICAL/SHAKE	(FT ²): 7,920 ED/NEGATIVE URES:	AIR TO CLOTH RA FORCED/POSITIV SONIC	ATIO: 5.47 /E .LAPSE	FILTER MA	SIZE (MICRONS) 0-1	WOVEN PARTIC	N F LE SIZE DIS IGHT % TOTAL 0	TRIBUTION	0
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [[ER	AIR TO CLOTH RA FORCED/POSITIV SONIC SIMPLE BAG COLLA RING BAG COLLA	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10	WOVEN PARTIC	LE SIZE DIS IGHT % TOTAL 0 58	CUM	% 0 58
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDU AIR PULSE REVERSE FLOW MECHANICAL/SHAKE	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25	WOVEN PARTIC	LE SIZE DIS IGHT % TOTAL 0 58 42	CUM	% 0 58 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50	WOVEN PARTIC	LE SIZE DIS IGHT % TOTAL 0 58 42 0	TRIBUTION CUM	% 0 58 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WOVEN PARTIC	N	TRIBUTION CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50	WOVEN PARTIC	N	CUM	% 0 58 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WOVEN PARTIC	N	TRIBUTION CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WOVEN PARTIC	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WOVEN PARTIC	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT ²): 7,920 ED/NEGATIVE URES: [ER EAM: Fan draws air s	AIR TO CLOTH RANGE FORCED/POSITIVE SONIC SIMPLE BAG COLLAR RING BAG COLLAR READ FROM transfer point	ATIO: 5.47 /E .LAPSE		SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100	WOVEN PARTIC	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDI AIR PULSE REVERSE FLOW MECHANICAL/SHAKE OTHER: DESCRIBE INCOMING AIR STRE which then intermittently purges to	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDI AIR PULSE REVERSE FLOW MECHANICAL/SHAKE OTHER: DESCRIBE INCOMING AIR STRE which then intermittently purges to	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE:	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDI AIR PULSE REVERSE FLOW MECHANICAL/SHAKE OTHER: DESCRIBE INCOMING AIR STRE which then intermittently purges to	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100
TOTAL FILTER SURFACE AREA DRAFT TYPE: INDUCE DESCRIBE CLEANING PROCEDI AIR PULSE REVERSE FLOW MECHANICAL/SHAKE OTHER: DESCRIBE INCOMING AIR STRE which then intermittently purges to	(FT²): 7,920 ED/NEGATIVE URES: [ER	AIR TO CLOTH RA	ATIO: 5.47 //E LAPSE APSE sits and open areas in	nto the unit	SIZE (MICRONS) 0-1 1-10 10-25 25-50 50-100 >100	WOVEN PARTIC WE OF	N	CUM	% 0 58 100 100

Stockpile Sizing Screen Baghouse (CD-040)

DMS Dryer Operations

ES-039a - ES-039d CD-039

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-039a				
DMS Feed Bin				CONTROL DEVI		CD-039		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-039	
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Bin fed from plant stockpile with dust pickups. So	,	•						
E APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)
Int.combustion engine/generator (Form B2)			Coating/finishing/printing (Form B5) Incineration (Form B8)					,
Liquid storage tanks (Form B3)		•	ilos/bins (Form	• • •	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25		
				FORMATION I				
		SOURCE OF		ED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0237	0.0829	0.4733	2.0732	0.0237	0.1037
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0112	0.0392	0.2239	0.9806	0.0112	0.0490
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0017	0.0059	0.0339	0.1485	0.0017	0.0074
SULFUR DIOXIDE (SO2)		711 - 42	0.0017	0.0000	0.0000	0.1400	0.0017	0.0074
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE		
77712111200	T	SOURCE OF	ī	ED ACTUAL	T	POTENTIAL I	EMISSIONS	
		EMISSION					(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	
HAZARDOUS AIR FOLLUTANT	CAS NO.	PACTOR	10/111	toris/yi	10/111	toris/yi	ID/III	tons/yr
TOYIC A	VIR POLLUI	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLI	RCF		
TOXIOF	T OLLO	T	T T	JAMIA I I OIV I C	ok mio oco	NOL .	<u> </u>	
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	31/	lh.	/yr
TOXIC AIR FOLLUTAIN	CAS NO.	TACTOR		10/111	ID/G	ау	ID	7 yı
							 	
	+	+						
	+	 	 					
	†	 	 		1		<u> </u>	
	ı	I.	I		I			

EMISSION SOURCE (STORAGE SILO/BINS)

1 OF 1 PROCESS (ATTACH FL eveyed to the bin with du		2:	CONTROL DE	DURCE ID NO: ES-039a EVICE ID NO(S): CD-039 DINT(STACK) ID NO(S): EP-039
PROCESS (ATTACH FL		2:		
PROCESS (ATTACH FL		2 i	EMISSION PO	DINT(STACK) ID NO(S): EP-039
		0 i-		
		jure 3 in	Section 3.	
			DENSITY OF MATER	RIAL (LB/FT3): 170
CUBIC FEET: 2 100				
				WIDTH: 20 HEIGHT: 30
		2.677.05		ESIGN CAPACITY: 3,346,320
	•			FILLED FROM
	BELT CONVEYOR			RAILCAR TRUCK STORAGE PILE OTHER: Upstream Process Units
				·
ERIAL UNLOADED FRO	OM SILO? Conveyor			
RATE OF MATERIAL (TONS/HR): 382			
DING RATE OF MATER	IAL (TONS/HR): 382			
	HEIGHT: ROUGHPUT (TONS) FILLED TO: DMS prepping screen ERIAL UNLOADED FRO	FILLED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR	CUBIC FEET: 2,100 HEIGHT: DIAMETER: (OR) ROUGHPUT (TONS) ACTUAL: 2,677,056 FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: OTHER: BRATE OF MATERIAL (TONS/HR): 382	HEIGHT: DIAMETER: (OR) LENGTH: 25 ROUGHPUT (TONS) ACTUAL: 2,677,056 MAXIMUM DI FILLED MECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: TO: DMS prepping screen ERIAL UNLOADED FROM SILO? Conveyor

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В			
EMISSION SOURCE DESCRIPTION:	SSION SOURCE DESCRIPTION:					ES-039b		•			
Belt Feeder - DMS #1					CONTROL DEVICE ID NO(S): CD-039						
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-039				
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /	- ()					
Plant stockpile material conveyed with dust		•									
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):									
Coal,wood,oil, gas, other burner (Form		•	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)			
Int.combustion engine/generator (Form	*	Coating/fi	nishing/printin	g (Form B5)		ion (Form B8)	• (,			
Liquid storage tanks (Form B3)	•	Storage s	ilos/bins (Forn	n B6)	Other (Fo	orm B9)					
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)						
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:		DAY/WK 52 W	K/YR				
	NSPS (SUBPARTS	S?): OOO			(SUBPARTS?):						
PERCENTAGE ANNUAL THROUGHPUT (•	25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25					
	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE					
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS				
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)			
AIR POLLUTANT EMITTED	AIR POLLUTANT EMITTED		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
	ARTICULATE MATTER (PM)		0.0007	0.0023	0.0134	0.0586	0.0007	0.0029			
PARTICULATE MATTER<10 MICRONS (PM ₁	۵)	AP-42 AP-42	0.0002	0.0008	0.0044	0.0192	0.0002	0.0010			
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0001	0.0007	0.0029	0.0000	0.0001			
SULFUR DIOXIDE (SO2)											
NITROGEN OXIDES (NOx)											
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (VOC)										
LEAD	,										
OTHER											
	DOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE					
		SOURCE OF				POTENTIAL I	EMISSIONS				
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONT		1	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
			,	,.		,.		12112, 31			
TOX	IC AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE					
		SOURCE OF	ΓV	DECTED ACTUAL	EMICCIONE AE	TED CONTRO	LC / LIMITATI	ONE			
	SOURCE OF E				XPECTED ACTUAL EMISSIONS AFTER CONTROLS / LII			ONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	Ib	o/yr			

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate							
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-039b				
Belt Feeder - DMS #1		CONTROL DEVICE ID NO(S):	CD-039				
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	IO(S): EP-039				
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):							
Plant stockpile material conveyed with dust pickups. See PFD Figure 3 in	n Section 3.						
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	UNITS	MAX. DESIGN	CAPACITY				
TYPE		CAPACITY (UNIT/HR) 95.5	LIMITATION(I N/A	JNH/HK)			
Ore	tons	95.5	IN/A				
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UNIT/BATCH)				
MAXIMUM DESIGN (BATCHES / HOUR):	T						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	YR):					
FUEL USED: N/A	1	MUM FIRING RATE (MILLION BT					
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE	:: N/A				
OOWINE IN TO.							

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR		,i -			
Belt Feeder - DMS #2				EMISSION SOURCE ID NO: ES-039c CONTROL DEVICE ID NO(S): CD-039					
OPERATING SCENARIO 1 OF 1				1	T (STACK) ID NO		EP-039		
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	W DIAGRAM):		(- /				
Plant stockpile material conveyed with dust pick		•							
APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form B1)		•	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)	
Int.combustion engine/generator (Form B2)		nishing/printing	•		on (Form B8)	•	,	
Liquid storage tanks (Form B3)	,	•	ilos/bins (Form	• ,	U Other (Fo				
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD					
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR		
	S?): OOO			(SUBPARTS?):					
PERCENTAGE ANNUAL THROUGHPUT (%):	25 MAR-N	MAY 25	JUN-AUG	, , =	SEP-NOV 25				
		UTANT EMI	SSIONS IN	FORMATION I	FOR THIS SO	URCE			
		SOURCE OF	T	TED ACTUAL	1	POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0007	0.0023	0.0134	0.0586	0.0007	0.0029	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0002	0.0008	0.0044	0.0192	0.0002	0.0010	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0001	0.0007	0.0029	0.0002	0.0001	
SULFUR DIOXIDE (SO2)		7	0.0000	0.000.	0.000.	0.0020	0.0000	0.000.	
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
	US AIR POL	LUTANT EI	MISSIONS I	NFORMATION	FOR THIS S	OURCE			
	T	SOURCE OF	1	TED ACTUAL	<u> </u>	POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)				POLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr tons/yr		(AFTER CONTROLS / LIMITS Ib/hr tons/yr		
III DECOMENTATION OF THE PROPERTY OF THE PROPE	5/10 110.	17101011	15/111	torioryi	15/111	torioryi	15/11	torioryi	
TOXIC	AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE			
		SOURCE OF	- FV	DEOTED ACTUAL	E1410010110 4E			0110	
	EX	EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITA				SNS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	ay	lb	/yr	

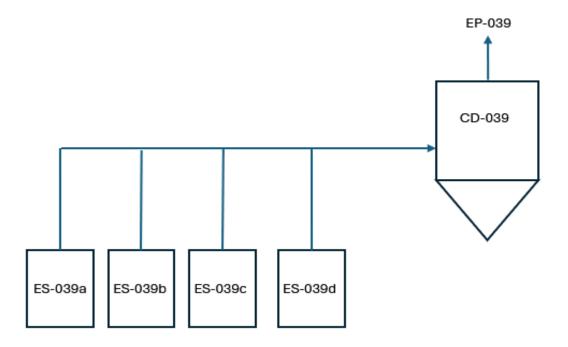
	NCDEQ/Division of Air Quality - A	pplication fo	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO:	ES-039c	
Belt Feeder - DMS #2			CONTROL DEVICE ID NO(S):	CD-039	
OPERATING SCENARIO: 1 OF 1			EMISSION POINT (STACK) ID I	NO(S): EP-039	
DESCRIBE IN DETAIL THE PROCES	S (ATTACH FLOW DIAGRAM):				
Plant stockpile material conveyed with	dust pickups. See PFD Figure 3 in S	Section 3.			
MATERIALS ENTERING P	ROCESS - CONTINUOUS PROCES	SS	MAX. DESIGN	CAPACITY	
TYPI		UNITS	CAPACITY (UNIT/HR)	LIMITATION(JNIT/HR)
Ore		tons	95.5	N/A	
MATERIALS ENTERING	PROCESS - BATCH OPERATION	1	MAX. DESIGN	REQUESTED	CARACITY
MATERIALS ENTERING PROCESS - BATCH OPERATION TYPE			CAPACITY (UNIT/BATCH)	LIMITATION (UI	
	-	UNITS	OALACITI (ONIT/BATCIT)	LIMITATION (OI	WII/BATOII)
MAXIMUM DESIGN (BATCHES / HOU	JR):				
REQUESTED LIMITATION (BATCHES	S / HOUR): (I	BATCHES/YF	R):		
FUEL USED: N/A	Т	OTAL MAXIN	MUM FIRING RATE (MILLION B	ΓU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE	E: N/A	REQUESTED	CAPACITY ANNUAL FUEL USE	E: N/A	
COMMENTS:					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NC	DEQ/Division	n of Air Quality	/ - Applicatior	for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-039d			
DMS Dryer				CONTROL DEVI		CD-039			
OPERATING SCENARIO 1 OF 1				EMISSION POIN	\ /		EP-039		
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTACH FLOV	V DIAGRAM):		(= :: : : : : ; : = : : :	-(-)-			
One Source FT Series rotary dryer with dust pick	,			Section 3.					
APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGES	S):							
Coal,wood,oil, gas, other burner (Form B1)		Woodworl	king (Form B4))	Manuf. of	chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form B2)		Coating/fi	/finishing/printing (Form B5) Incineration (Form B8)						
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form						
START CONSTRUCTION DATE: TBD			e silos/bins (Form B6) Other (Form B9) DATE MANUFACTURED: TBD						
MANUFACTURER / MODEL NO.: One Source - I	FT Series Rot	ary Dryer	EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR		
	(SUBPARTS				(SUBPARTS?):				
PERCENTAGE ANNUAL THROUGHPUT (%): D	•	25 MAR-N	1AY 25	JUN-AUG	,	SEP-NOV 25			
CRITERIA	AIR POLL	UTANT EMI	SSIONS INI	FORMATION I	OR THIS SO	URCE			
		SOURCE OF	T	ED ACTUAL		POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		1	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42 1.4-2	0.2222	0.99	0.26	1.18	0.22	0.99	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42 1.4-2	0.2211	0.98	0.24	1.07	0.22	0.98	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42 1.4-2	0.2202	0.98	0.22	0.99	0.22	0.98	
SULFUR DIOXIDE (SO2)	AP-42 1.4-2	0.02	0.08	0.02	0.08	0.02	0.08		
NITROGEN OXIDES (NOx)	AP-42 1.4-2	1.05	4.6	1.05	4.6	1.05	4.6		
CARBON MONOXIDE (CO)	AP-42 1.4-2	2.47 10.82		2.47	10.82	2.47	10.82		
VOLATILE ORGANIC COMPOUNDS (VOC)		AP-42 1.4-2	0.16	0.71	0.16	0.71	0.16	0.71	
LEAD		72 2	00	· · ·	0.10	0	0.10	J	
OTHER									
	S AIR POL	LUTANT EN	IISSIONS I	NFORMATION	FOR THIS S	OURCE			
		SOURCE OF	F EXPECTED ACTUAL POTENTIAL EMISSIONS						
		EMISSION		TROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS)				
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Benzene	71432	AP-42 1.4-3	6.18E-05	2.71E-04	6.18E-05	2.71E-04	6.18E-05	2.71E-04	
Benzo(a)pyrene	50328		3.53E-08	1.55E-07	3.53E-08	1.55E-07	3.53E-08	1.55E-07	
Dichlorobenzene	106467	AP-42 1.4-3	3.53E-05	1.55E-04	3.53E-05	1.55E-04	3.53E-05	1.55E-04	
Formaldehyde	50000		2.21E-03	9.66E-03	2.21E-03	9.66E-03	2.21E-03	9.66E-03	
Hexane	110543		5.29E-02	2.32E-01	5.29E-02	2.32E-01	5.29E-02	2.32E-01	
Naphthalene	91203	AP-42 1.4-3	1.79E-05	7.86E-05	1.79E-05	7.86E-05	1.79E-05	7.86E-05	
Toluene	108883	AP-42 1.4-3	1.00E-04	4.38E-04	1.00E-04	4.38E-04	1.00E-04	4.38E-04	
TOXIC A	IR POLLUT	TANT EMISS	SIONS INFO	DRMATION FO	OR THIS SOU	RCE			
		SOURCE OF EMISSION	EXI	PECTED ACTUAL	L EMISSIONS AFTER CONTROLS / LIMITATIONS				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/day		Ib	o/yr	
Benzene	71432	AP-42 1.4-3	6.1	18E-05	1.48E-03		2.25	5E-02	
Benzo(a)pyrene	50328	AP-42 1.4-3	3.5	53E-08	8.47E	-07	1.29	9E-05	
Dichlorobenzene	106467	AP-42 1.4-3	3.5	53E-05	8.47E	-04	1.29	9E-02	
Formaldehyde	50000	AP-42 1.4-3	2.2	21E-03	5.29E-02		8.05	5E-01	
Hexane	110543	AP-42 1.4-3		0.05	1.2	7	19	9.32	
Toluene	108883	AP-42 1.4-3	1.0	00E-04	2.40E	-03	3.65	5E-02	

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

REVISED 09/22/16	NCDEQ/Division of	Air Quality - A	pplication for Air Pe	ermit to Construct/C	Operate	B1			
EMISSION SOURCE DESCRIPTION	ON:		EMISS	EMISSION SOURCE ID NO: ES-039d					
DMS Dryer			CONTI	CONTROL DEVICE ID NO(S): CD-039					
OPERATING SCENARIO 1 OF 1			EMISS	ION POINT (STACK	() ID NO(S):	EP-039			
DESCRIBE USE: PROCE	ESS HEAT	SPACE HEAT	ELECTRICAL GENERATION						
CONTI	NUOUS USE	STAND BY/EM	IERGENCY	OTHER (DESCRIB	BE): Dryer				
HEATING MECHANISM:	INDIRECT	4	DIRECT						
MAX. FIRING RATE (MMBTU/HOU	JR): 30.0								
		WOOD-	FIRED BURNER	R					
WOOD TYPE: BARK	WOOD/BARK	☐ WET WO	OD 🗌 D	RY WOOD	OTHER (DESC	RIBE):			
PERCENT MOISTURE OF FUEL:									
UNCONTROLLED	CONTROLLE	D WITH FLYAS	H REINJECTION		CONTROLLED W/O RE	INJECTION			
FUEL FEED METHOD:		HEAT TRANS	FER MEDIA:	STEAM AIR	OTHER (DESCRIBE	<u> </u>			
		COAL-	FIRED BURNER		,				
TYPE OF BOILER	IF OTHER DESCR	IBE:							
PULVERIZED OVERFEED STO	STOKER	SPREADER	STOKER	FLUIDIZED BED					
☐ WET BED ☐ UNCONTRO	LED	UNCONTROL	LED	CIRCULATING					
☐ DRY BED ☐ CONTROLLE	ED CONTROLLE	D	FLYASH REIN	NJECTION	RECIRCULATING				
		☐ NO FLYASH REINJECTION							
		OIL/GAS	-FIRED BURNE	R					
TYPE OF BOILER:	UTILITY INDUS	STRIAL	COMMERCIAL		NSTITUTIONAL				
TYPE OF FIRING:	NORMAL TANGE	ENTIAL	LOW NOX BUF		NO LOW NOX BURNER	₹			
		OTHER FU	EL-FIRED BURN	NER					
TYPE(S) OF FUEL:	PE								
TYPE OF BOILER:	UTILITY INDUS	STRIAL	COMMERCIAL		NSTITUTIONAL				
TYPE OF FIRING:		CONTROL(S) (II							
	FUEL USA	GE (INCLUI	DE STARTUP/BA			TRANSPORTE			
FUEL TY/DE	LINUTO		MAXIMUM DESIG		REQUESTED CAPACITY				
FUEL TYPE	UNITS		CAPACITY (UNIT/H	IK)	LIMITATION (UNIT/HR)				
Natural Gas	MMBtu/hr		30 MMBtu/hr		N	I/A			
				+					
	FUEL CHARACTER	PISTICS (CO	MDI ETE ALL TI	HAT ARE APPI	ICARLE)				
	TOLL OHARAOTER		PECIFIC	SULFUR CONTE	•	H CONTENT			
FUEL TYI	PE		CONTENT	(% BY WEIGH		BY WEIGHT)			
Natural G			20 Btu/scf	(** = * * * = * * * * * * * * * * * * *					
- Natural G	as	102	20 Btu/SCI						
COMMENTS:				<u> </u>					


Attach Additional Sheets As Necessary

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16 NCD	EQ/Div	vision of Air Quality	- Application for Air Permit to	Construc	t/Operate				C1
CONTROL DEVICE ID NO: CD-03	9	CONTROLS EMISS	IONS FROM WHICH EMISSION	N SOURC	CE ID NO(S): ES-039	9a through ES-	039d DMS Dryer Buil	ding
EMISSION POINT (STACK) ID NO(S): EP-039)	POSITION IN SERI	ES OF CONTROLS		NO.	1 OF	1 UNITS		
OPERATING SCENARIO) :								
1 OF 1			P.E. SEAL REQUIRED (PER 2	q .0112)?	? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:									
Schust 1 module, size 1315, Model 168, F A solid state timer provides sequential pu See control device PFD on the next page.			in a single configuration.						
POLLUTANTS COLLECTED:	PM PM ₁₀		PM _{2.5}						
BEFORE CONTROL EMISSION RATE (LB/HR):			0.54 0.25		0.04				
CAPTURE EFFICIENCY:			95 % 95	% _	95	%	%		
CONTROL DEVICE EFFICIENCY:			99 % 99	% _	99		<u></u> %		
CORRESPONDING OVERALL EFFICIENCY:			94.05 % 94.05	% _	94.05	%	<u></u> %		
EFFICIENCY DETERMINATION CODE:			11		1				
TOTAL AFTER CONTROL EMISSION RATE (LB/H	R):		0.005 0.002	_	0.0004	-			
PRESSURE DROP (IN H ₂ 0): MIN: -10 MAX: -	20	GAUGE?	✓ YES						
BULK PARTICLE DENSITY (LB/FT³): 90				MIN 0		MAX 115			
POLLUTANT LOADING RATE: LB/HI		✓ GR/FT ³	OUTLET TEMPERATURE (°F)			MAX 115			
` '	13,300		FILTER OPERATING TEMP (°	r e					
		PER COMPARTMEN			H OF BAG				
<u> </u>	SURF	ACE AREA PER CAR		DIAMET	ER OF BA	AG (IN.): 6			
TOTAL FILTER SURFACE AREA (FT ²): 4,290		AIR TO CLOTH RA							
DRAFT TYPE: INDUCED/NEGATIVE DESCRIBE CLEANING PROCEDURES:		FORCED/POSITIVE	FILTER MA	ATERIAL:		WOVEN	FELTED ARTICLE SIZE DI	STRIBUTION	
_		20110			175				
✓ AIR PULSE ☐ REVERSE FLOW	H	SONIC SIMPLE BAG COLL	ADOF		IZE	WEIGHT %		CUMULATIVE	
MECHANICAL/SHAKER	H	RING BAG COLLAR			RONS) 0-1	OF TOTAL	-	% 0	
OTHER:	ш	KING BAG COLLAR	-SE		-10	58		58	-
DESCRIBE INCOMING AIR STREAM: Fan draws a	ir strea	m from transfer points	s and open areas into the unit		0-25	42		100	
which then intermittently purges to return material b	ack ont	to the cpnveyor.	·	25-50 0				100	
					-100	0		100	
					100	0		100	
							-	TOTAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGRAM SI	HOWIN	IG THE RELATIONS	HIP OF THE CONTROL DEVICE	TOITS	EMISSION	SOURCE(S)			
COMMENTS:									

DMS Dryer Baghouse (CD-039)

DMS and Magnetic Separation Operations

ES-042

ES-047

ES-032

ES-043a - ES-043g

ES-051

CD-043

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate							В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-042		
Dryer Discharge Conveyor #1				CONTROL DEVI		CD-043		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	D(S):	EP-043	
DESCRIBE IN DETAILTHE EMISSION SOURCE DMS dryer discharge conveyor with dust pickups								
APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form B2)		Coating/fi	nishing/printing	g (Form B5)	Incinerati	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Under (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7 I	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO? 🖳 NSPS	(SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): [EC-FEB	25 MAR-N	MAY 25	JUN-AUG	25 \$	SEP-NOV 25		
CRITERIA	AIR POLL	UTANT EMI	SSIONS IN	FORMATION I	FOR THIS SO	URCE		
		SOURCE OF	EXPECT	ED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0003	0.0009	0.0050	0.0221	0.0003	0.0011
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0001	0.0003	0.0017	0.0073	0.0001	0.0004
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0001
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
HAZARDOU	S AIR POL	LUTANT EN	MISSIONS I	NFORMATION	N FOR THIS S	OURCE		
		SOURCE OF	OF EXPECTED ACTUAL		POTENTIAL EMISSIONS			
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CON		(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOXIC A	IR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF EMISSION	EX	PECTED ACTUAL	_ EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR			lb/d	ay	Ib	o/yr

	- Application fe	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:	ļ	EMISSION SOURCE ID NO:	ES-042	
Dryer Discharge Conveyor #1		CONTROL DEVICE ID NO(S):	CD-043	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-043	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): DMS dryer discharge conveyor with dust pickups. See PFD Figure 3 in S	ection 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Ore	tons	36	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
ТҮРЕ	UNITS	ITS CAPACITY (UNIT/BATCH) LIMITATION (UNIT/E		
	 		 -	
	 		 -	
	 		 	
	 			
	 			
	 			
	 			
MAXIMUM DESIGN (BATCHES / HOUR):	<u> </u>			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/YI	B)·		
FUEL USED: N/A		MUM FIRING RATE (MILLION B	TII/HR\· N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-047				
Dryer Discharge Conveyor #2				CONTROL DEVI	CE ID NO(S):	CD-043		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-043	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	W DIAGRAM):		(- /			
DMS dryer discharge conveyor with dust pickup								
E APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		•	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2)			nishing/printing	•		on (Form B8)	3 . (,
Liquid storage tanks (Form B3)		0	ilos/bins (Form	,	United States			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	,	•		
MANUFACTURER / MODEL NO.: TBD				OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	MAY 25	JUN-AUG		SEP-NOV 25		
				FORMATION I				
		SOURCE OF	T	TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0003	0.0009	0.0050	0.0221	0.0003	0.0011
PARTICULATE MATTER (1 M)		AP-42	0.0003	0.0003	0.0017	0.0073	0.0003	0.0004
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0004
SULFUR DIOXIDE (SO2)		711 - 42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0001
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	US AIR POI	I UTANT FI	MISSIONS I	NFORMATION	FOR THIS S	OURCE		
	1	SOURCE OF					EMISSIONS	
		EMISSION		NTROLS / LIMITS)				TOOL C. (LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	Ib/hr tons/yr		(AFTER CONTROLS / LIMITS) Ib/hr tons/yr	
TIAZANDOUS AIN POLLUTANT	CAS NO.	TACTOR	10/111	toris/yi	ID/III	toris/yi	10/111	toris/yi
								
								
TOXIC	AIR POLLU	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOU	RCF		
10000	1	I						
		SOURCE OF EMISSION	EX	PECTED ACTUAL	. EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	av	Ih	o/yr
	07.01.01	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		12/11	1574	,		, <u>, ,</u>
	+							
	1							
					1			
	+		†		1			
	†	1	1					
					1			

	- Application f	or Air Permit to Construct/Ope	rate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-047			
Dryer Discharge Conveyor #2		CONTROL DEVICE ID NO(S):	CD-043			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-043			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): DMS dryer discharge conveyor with dust pickups. See PFD Figure 3 in S	Section 3.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	FSS	MAX. DESIGN REQUESTED CAP				
TYPE	UNITS	CAPACITY (UNIT/HR)	UNIT/HR)			
Ore	tons	36	N/A	•		
Ole	toris	30	IN/A			
MATERIALS ENTERING PROCESS - BATCH OPERATION	-	MAX. DESIGN	REQUESTED			
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NII/BATCH)		
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):				
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A			
COMMENTS:						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit t	o Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-032					
Dryer Discharge Conveyor #3				CONTROL DEV		CD-043			
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-043		
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):		(-)	7			
DMS dryer discharge conveyor with dust picl		•							
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form l	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Fe	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR		
IS THIS SOURCE SUBJECT TO?	ISPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_				
PERCENTAGE ANNUAL THROUGHPUT (9	6): DEC-FEB	25 MAR-N	ЛАY 25	JUN-AUG	25	SEP-NOV 25			
CRITEI	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SC	URCE			
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS		
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0003	0.0009	0.0050	0.0221	0.0003	0.0011	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	AP-42	0.0001	0.0003	0.0017	0.0073	0.0001	0.0004	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0001	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC))								
LEAD									
OTHER									
HAZARD	OUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE			
		SOURCE OF	EXPECTED ACTUAL		POTENTIAL EMISSIONS				
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
TOXI	C AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE			
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
		EMISSION			1				
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	o/yr	
			ļ						
			ļ						
			L						

	y - Application f	or Air Permit to Construct/Ope	rate	В9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-032			
Dryer Discharge Conveyor #3		CONTROL DEVICE ID NO(S):	CD-043			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-043			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): DMS dryer discharge conveyor with dust pickups. See PFD Figure 3 ir						
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN REQUESTED CA				
TYPE	UNITS	CAPACITY (UNIT/HR)	UNIT/HR)			
Ore	tons	36	N/A	· · · · · · · · · · · · · · · · · · ·		
Ole .	toris	30	19/74			
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI			
	OTTO	GALFAGITT (GIATI/BATTOTI)	Environ (or	117,5711 0117		
MAXIMUM DESIGN (BATCHES / HOUR):		<u> </u>				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R)·				
	,	MUM FIRING RATE (MILLION B	TU/UD N/A			
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A	1	CAPACITY ANNUAL FUEL USI				
COMMENTS:	REQUESTEL	CAPACITT ANNUAL FUEL US	IV/A			
COMMENTS:						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit t	o Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-043a					
Dryer Discharge Conveyor #4				CONTROL DEV		CD-043			
OPERATING SCENARIO 1 OF 1					IT (STACK) ID N	O(S):	EP-043		
DESCRIBE IN DETAILTHE EMISSION SO	URCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()			
DMS feed operations with dust pickups. See		•							
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Fe	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR		
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25			
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SC	URCE			
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS		
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTROLS / LIMITS)		
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0003	0.0009	0.0050	0.0221	0.0003	0.0011	
PARTICULATE MATTER<10 MICRONS (PM1	0)	AP-42	0.0001	0.0003	0.0017	0.0073	0.0001	0.0004	
PARTICULATE MATTER<2.5 MICRONS (PM	PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		0.0000	0.0000	0.0002	0.0011	0.0000	0.0001	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD									
OTHER									
HAZARI	DOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	SOURCE			
		SOURCE OF	EXPECTED ACTUAL		POTENTIAL EMISSIONS				
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)		
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
TOX	IC AIR POLLU		T	ORMATION FO	OR THIS SOU	RCE			
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS	
TOYIC AIR BOLL LITANT	CACNO	EMISSION		Il- /l	Ib/a	la		- fo con	
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/c	iay	IC	o/yr	
		 	 						
			<u> </u>						
	i	1	1		1				

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	ate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-043a				
Dryer Discharge Conveyor #4		CONTROL DEVICE ID NO(S):	CD-043			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-043			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): DMS feed operations with dust pickups. See PFD Figure 3 in Section 3.						
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	UNIT/HR)		
Ore	tons	36	N/A			
	<u> </u>					
	 					
	 					
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON N	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI			
		,	,	,		
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	(R):				
FUEL USED: N/A	TOTAL MAXI	IMUM FIRING RATE (MILLION B)	ΓU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE	:: N/A			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-043b		•
Magnetic Feed Bin				CONTROL DEV	ICE ID NO(S):	CD-043		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID N	O(S):	EP-043	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()		
Dense media separation operations with dus	,	•	•					
APPROPRIATE FORM B1-B9 ON THE FO	LLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form l	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		√ Storage s	ilos/bins (Forn	n B6)	Other (Fe	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	ISPS (SUBPARTS	3?): 000		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9	6): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITEI	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SC	URCE		
		SOURCE OF	EXPEC	ED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0022	0.0083	0.0446	0.1954	0.0022	0.0098
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	AP-42	0.0011	0.0039	0.0211	0.0924	0.0011	0.0046
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0002	0.0006	0.0032	0.0140	0.0002	0.0007
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC))							
LEAD								
OTHER								
HAZARD	OUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	SOURCE		
		SOURCE OF	EXPECTED ACTUAL		POTENTIAL EMISSIONS			
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
TOXI	C AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	IRCE		
		SOURCE OF	EX	PECTED ACTUA	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
		EMISSION						
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/c	lay	lb	o/yr
			ļ					
			ļ					
			L					

EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/Divis	ion of Air Quality - Ap	plication	for Air P	ermit to Const	truct/C)perate			86
TION:			Ef	MISSION SOUI	RCE II	NO:	ES-043)	
			C	ONTROL DEVI	CE ID	NO(S):	CD-043		
1 OF 1			Ef	MISSION POIN	IT(STA	CK) ID N	O(S):	EP-043	
		ckups. S	ee PFD F	igure 3 in Secti	on 3.				
			DENSITY	OF MATERIAL	L (LB/F	T3): 170			
CUBIC FEET: 1,000						,			
	DIAMETER:				VIDTH:	20	HEIGHT	: 30	
UGHPUT (TONS)	ACTUAL:	268,056	M	AXIMUM DESI	GN CA	APACITY:	315,360		
LED	MECHANIC	ALLY FI	LLED				FILLE	FROM	
	BELT CONVEYOR BUCKET ELEVATOR					TRUCK STORAG	GE PILE	ım Process U	Inits
				I			•		
ATE OF MATERIAL (T	FONS/HR): 36								
IG RATE OF MATERI	AL (TONS/HR): 36								
	TION: 1 OF 1 DCESS (ATTACH FLOTATION ATTEOR MATERIAL (1)	TION: 1 OF 1 DCESS (ATTACH FLOW DIAGRAM): In the plant stockpile via conveyor with dust pi CUBIC FEET: 1,000 HEIGHT: UGHPUT (TONS) LED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Magnetic separation operations	TION: 1 OF 1 DCESS (ATTACH FLOW DIAGRAM): In the plant stockpile via conveyor with dust pickups. S CUBIC FEET: 1,000 HEIGHT: DIAMETER: (OR) UGHPUT (TONS) ACTUAL: SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Magnetic separation operations MAL UNLOADED FROM SILO? Belt Conveyor	TION: 1 OF 1 DENSITY CUBIC FEET: 1,000 HEIGHT: DIAMETER: DIAMETER: DIAMETER: DIAMETER: DIAMECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR DENSITY OTHER: Magnetic separation operations AL UNLOADED FROM SILO? Belt Conveyor	TION: EMISSION SOUL CONTROL DEVI EMISSION POIN DESS (ATTACH FLOW DIAGRAM): In the plant stockpile via conveyor with dust pickups. See PFD Figure 3 in Section DENSITY OF MATERIA CUBIC FEET: 1,000 HEIGHT: DIAMETER: (OR) LENGTH: 22 V UGHPUT (TONS) ACTUAL: 268,056 MAXIMUM DESI LED MECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Magnetic separation operations MAL UNLOADED FROM SILO? Belt Conveyor	TION: EMISSION SOURCE ID CONTROL DEVICE ID EMISSION POINT(STA DESS (ATTACH FLOW DIAGRAM): In the plant stockpile via conveyor with dust pickups. See PFD Figure 3 in Section 3. DENSITY OF MATERIAL (LB/F CUBIC FEET: 1,000 TONS: 75 tons HEIGHT: DIAMETER: (OR) LENGTH: 22 WIDTH: UGHPUT (TONS) ACTUAL: 268,056 MAXIMUM DESIGN CA LED MECHANICALLY FILLED SCREW CONVEYOR BLIC CONVEYOR BLIC CONVEYOR BLIC CONVEYOR DTOTAL CONVEYOR DIAMETER: Magnetic separation operations AL UNLOADED FROM SILO? Belt Conveyor	CONTROL DEVICE ID NO(S): 1 OF 1 DEMISSION POINT(STACK) ID N DENSITY OF MATERIAL (LB/FT3): 170 CUBIC FEET: 1,000 HEIGHT: DIAMETER: DIAMET	EMISSION SOURCE ID NO: ES-043: CONTROL DEVICE ID NO(S): CD-043 1 OF 1 EMISSION POINT(STACK) ID NO(S): DENSITY OF MATERIAL (LB/FT3): 170 CUBIC FEET: 1,000 HEIGHT: DIAMETER: (OR) LENGTH: 22 WIDTH: 20 HEIGHT UGHPUT (TONS) ACTUAL: 268,056 MAXIMUM DESIGN CAPACITY: 315,360 LED MECHANICALLY FILLED FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: MAGNITURE: Upstrea MA	EMISSION SOURCE ID NO: ES-043b CONTROL DEVICE ID NO(S): CD-043 1 OF 1 EMISSION POINT(STACK) ID NO(S): EP-043 DESSITY OF MATERIAL (LB/FT3): 170 CUBIC FEET: 1,000 TONS: 75 tons HEIGHT: DIAMETER: (OR) LENGTH: 22 WIDTH: 20 HEIGHT: 30 UGHPUT (TONS) ACTUAL: 268,056 MAXIMUM DESIGN CAPACITY: 315,360 LED MECHANICALLY FILLED FILLED FILLED FROM SCREW CONVEYOR RELT CONVEYOR RELT CONVEYOR RELT CONVEYOR SELT CONVEYOR TRUCK BUCKET ELEVATOR SUCKET ELEVATOR OTHER: Upstream Process U Magnetic separation operations AL UNLOADED FROM SILO? Belt Conveyor

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-043c		,i -	
LIMS Vibrating Feeder #1/#2				CONTROL DEVI		CD-043			
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-043		
DESCRIBE IN DETAILTHE EMISSION SOURCE	CE PROCESS (ATTACH FLOV	V DIAGRAM):		(- /				
Dense media separation operations with dust p									
APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):					-	-	
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)	
Int.combustion engine/generator (Form B2		_	nishing/printin	•		on (Form B8)	9 (,	
Liquid storage tanks (Form B3)	,		ilos/bins (Forn	,	United States				
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-			
MANUFACTURER / MODEL NO.: TBD				OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	-	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPARTS?): OOO NESHAP (SUBPARTS?):									
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	MAY 25	JUN-AUG	, , =	SEP-NOV 25			
				FORMATION I					
		SOURCE OF	7	TED ACTUAL	1	POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0003	0.0009	0.0050	0.0221	0.0003	0.0011	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0001	0.0003	0.0017	0.0073	0.0003	0.0004	
PARTICULATE MATTER<2.5 MICRONS (PM ₁₀)		AP-42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0004	
SULFUR DIOXIDE (SO2)		711-42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0001	
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
	IIS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE			
7771211120	1	SOURCE OF	1	XPECTED ACTUAL POTENTIAL EMISSIONS					
		EMISSION						DOLO (LIMITO)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	ntrols / Limits) tons/yr			lb/hr	ROLS / LIMITS)	
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	ID/III	toris/yi	10/111	tons/yr	ID/III	tons/yr	
TOXIC	AIR POLLI	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLI	RCF			
TOXIO	T OLLO			JAMATION I	ok mio oco	NOL .	<u> </u>		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	av	lh.	/yr	
TOXIO AIR I GEEGTART	GAO NO.	TAGTOR		15/111	ib/d	ц	15.	/ yı	
		 	1						
					1				
	I	I	I		I				

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Oper	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-043c	
LIMS Vibrating Feeder #1/#2		CONTROL DEVICE ID NO(S):	CD-043	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID I	NO(S): EP-043	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Dense media separation operations with dust pickups. See PFD Figure 3	3 in Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	· · · · · · · · · · · · · · · · · · ·
Ore	tons	36	N/A	
	 		 	
			 	
	 			
	 			
	+			
	+			
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	
		·		
	<u> </u>			
	<u> </u>			
	<u> </u>			
	<u> </u>		<u> </u>	
MAXIMUM DESIGN (BATCHES / HOUR):	-			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	'R):		
FUEL USED: N/A		MUM FIRING RATE (MILLION B		
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE	E: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 No.	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-043d		
LIMS Coarse Drums #1/#2				CONTROL DEVI		CD-043		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-043	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Dense media separation operations with dust pic	,							
E APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)			king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)
Int.combustion engine/generator (Form B2)			nishing/printin	•		on (Form B8)	3 . (,
Liquid storage tanks (Form B3)		_ 0	ilos/bins (Form	,	United States			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%): I		25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25		
				FORMATION I				
0.0.2.0.	7	SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0022	0.0083	0.0446	0.1954	0.0022	0.0098
PARTICULATE MATTER (1 M) PARTICULATE MATTER (1 M) PARTICULATE MATTER (1 M)		AP-42	0.0011	0.0039	0.0211	0.0924	0.0022	0.0036
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0001	0.0006	0.0032	0.0324	0.0001	0.0040
SULFUR DIOXIDE (SO2)		711 - 42	0.0002	0.0000	0.0002	0.0140	0.0002	0.0001
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	MISSIONS I	NEORMATION	I FOR THIS S	CURCE		
MAZANDOO	I AIN I OL	SOURCE OF EXPECTED ACTUAL			1		EMISSIONS	
		SOURCE OF			POTENTIAL EMISSIO			
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	+	<u> </u>	-				——	
	<u> </u>	-						
	<u> </u>	1						
	+	<u> </u>	-				——	
	<u> </u>	1						
TOVIC	ID DOLLIE	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLI	DCE.		
TOXIC	T POLLO	T	T T	JRIVIA I ION FO	JK THIS SOU	RCE		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATIO	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	15/4		15-	h
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/d	ау	ID	/yr
	+	<u> </u>	-				 	
	1	1	-				 	
	 	1	 		 		 	
	 	1	 		 		 	
	1	-	 		 		 	
								
	1	1	1		<u> </u>		<u> </u>	

REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application for	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-043d	
LIMS Coarse Drums #1/#2		CONTROL DEVICE ID NO(S):	CD-043	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-043	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Dense media separation operations with dust pickups. See PFD Figure 3	3 in Section 3			
Dense media separation operations with dust pickups. See FFD Figure 3) III Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	CAPACITY	
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	· · · · · · · · · · · · · · · · · · ·
Ore	tons	36	N/A	
	 			
	<u> </u>			
	 			
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON .	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	
	01111.0	Oranieri (c.m.z	Emil	111,5,110,
	†			
	†			
	1			
			1	
			1	
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU				
Coarse High Intensity Magnetic Separators				CONTROL DEV		CD-043		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO	O(S):	EP-043	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			7		
Dense media separation operations with du		•						
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	Other (Formula) Other (Formula)	orm B9)		
START CONSTRUCTION DATE: TBD		<u>'</u>	DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	ЛАY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0030	0.0111	0.0597	0.2616	0.0030	0.0131
PARTICULATE MATTER<10 MICRONS (PM ₁)	3)	AP-42	0.0013	0.0049	0.0261	0.1142	0.0013	0.0057
PARTICULATE MATTER<2.5 MICRONS (PM;	,	AP-42	0.0002	0.0007	0.0039	0.0173	0.0002	0.0009
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER						İ		
	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF EXPECTED ACTUAL						
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS)		(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				.,		,	-	,
TOX	IC AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EV	DECTED ACTUAL	EMISSIONS AE	TED CONTDO	I C / I IMITATI	ONS
		EMISSION		PECTED ACTUAI	L EIVIISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	Ib	o/yr

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application fe	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:	ļ	EMISSION SOURCE ID NO:	ES-043e	
Coarse High Intensity Magnetic Separators		CONTROL DEVICE ID NO(S):	CD-043	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-043	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Dense media separation operations with dust pickups. See PFD Figure 3	3 in Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I	
Ore	tons	36	N/A	· · · · · · · · · · · · · · · · · · ·
	1		ı	
	1		1	,
	1		ı	
MATERIALS ENTERING PROCESS - BATCH OPERATION	_	MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	ACITY (UNIT/BATCH) LIMITATION (UNIT/	
	 			
	 			
	 		<u> </u>	
	+		<u> </u>	
	+		1	
	+			
	+			
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/YI			
FUEL USED: N/A		MUM FIRING RATE (MILLION BT	TII/HR\· N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-043f		
Coarse Magnetics Conveyor				CONTROL DEVI		CD-043		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-043	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Dense media separation operations with dust pi								
E APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):					-	
Coal,wood,oil, gas, other burner (Form B1)		_	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2)		_	nishing/printin	•		on (Form B8)	3 . (,
Liquid storage tanks (Form B3)			ilos/bins (Form	,	United States			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	,	•		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25		
				FORMATION I				
		SOURCE OF		TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0000	0.0000	0.0001	0.0005	0.0000	0.0000
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0000	0.0000	0.0000	0.0003	0.0000	0.0000
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SULFUR DIOXIDE (SO2)		711-42	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE		
777.237.50	T	SOURCE OF	T			POTENTIAL I	EMISSIONS	
		EMISSION						DOLO (LIMITO)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	(BEFORE CONTROLS / LIMITS) (AFTER CONTROLS / LIMITS) Ib/hr tons/yr lb/hr			tons/yr
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	10/111	toris/yi	10/111	toris/yi	ID/III	toris/yi
TOYIC	AIR POLLIE	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLI	RCF		<u> </u>
TOXIO	T OLLO			JAMATION I	ok mio oco	NOL .	<u> </u>	
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	31/	lh.	/yr
TOXIC AIR FOLLUTARI	CAS NO.	TACTOR		ID/III	ID/G	ау	ID,	// yi
	+						 	
	+							
	+							
	+	 	 					
	+	 	 		1		<u> </u>	
	1	I	I		I			

REVISED 09/22/16 NCDEQ/Division of Air Quality -	- Application f	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-043f	
Coarse Magnetics Conveyor		CONTROL DEVICE ID NO(S):	CD-043	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-043	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Dense media separation operations with dust pickups. See PFD Figure 3	3 in Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	FSS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(L	
Ore	tons	0.74	N/A	· · · · · · · · · · · · · · · · · · ·
	10.10	U. 1		
			<u> </u>	
	†		 I	
			 I	
	1			,
	<u> </u>			
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	NIT/BATCH)
	 			
	 		<u> </u>	
	 		<u> </u>	
	┼──		 I	
	+		<u> </u>	
	+		<u> </u>	
	+			
MAXIMUM DESIGN (BATCHES / HOUR):		<u> </u>		
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	B)·		
FUEL USED: N/A		MUM FIRING RATE (MILLION B	TII/HR\· N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:	1			

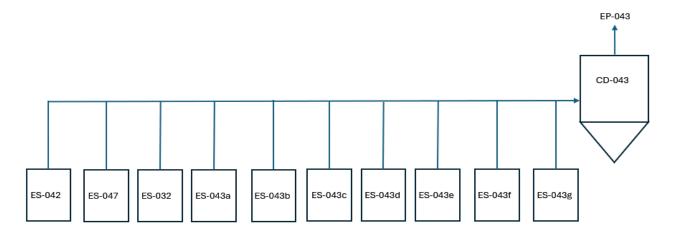
SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-043q		,i -	
Coarse Concentrate Conveyor #1				CONTROL DEVI	CE ID NO(S):	CD-043			
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-043		
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS (ATTACH FLOV	W DIAGRAM):		(- /				
Dense media separation operations with dust pic		•							
APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):					-	-	
Coal,wood,oil, gas, other burner (Form B1)			king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)	
Int.combustion engine/generator (Form B2)			nishing/printing	•		on (Form B8)	9 (,	
Liquid storage tanks (Form B3)		_ 0	ilos/bins (Form	,	United States				
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-			
MANUFACTURER / MODEL NO.: TBD				OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	-	
	S (SUBPARTS	(2). 000			(SUBPARTS?):				
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	MAY 25	JUN-AUG	, , =	SEP-NOV 25			
				FORMATION I					
		SOURCE OF	T	TED ACTUAL	1	POTENTIAL I	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0003	0.0009	0.0050	0.0221	0.0003	0.0011	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0003	0.0003	0.0017	0.0073	0.0003	0.0004	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0004	
SULFUR DIOXIDE (SO2)		711 - 42	0.0000	0.0000	0.0002	0.0011	0.0000	0.0001	
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD									
OTHER									
	IS AIR POI	I UTANT FI	MISSIONS I	NFORMATION	FOR THIS S	OURCE			
10.2.3.20	T	SOURCE OF	1		T	POTENTIAL I	EMISSIONS		
		EMISSION						R CONTROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	ITROLS / LIMITS) (BEFORE CONTROLS / LIMITS) (AI tons/yr lb/hr tons/yr		lb/hr	tons/yr		
TIAZANDOUS AIN POLLUTANT	CAS NO.	TACTOR	10/111	toris/yi	ID/III	toris/yi	10/111	toris/yi	
TOXIC A	VIR POLLU	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOU	RCF			
10,007	1	Ī							
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS	
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	av	Ih	/yr	
	57.0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		12/11	1574	,		,,,	
					1				
					1				
	1	1	1						
	1				1				

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application for	or Air Permit to Construct/Oper	ate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-043g	
Coarse Concentrate Conveyor #1		CONTROL DEVICE ID NO(S):	CD-043	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-043	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Dense media separation operations with dust pickups. See PFD Figure:	3 in Section 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	REQUESTED	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(L	· · · · · · · · · · · · · · · · · · ·
Ore	tons	36	N/A	
	 			
	 			
	 			
	+			
	+			
	+		<u> </u>	
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UN	
	1	,		
			1	
	†			
	<u> </u>			
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):	<u> </u>	
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	ΓU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL USE	≣: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divis	ion of Air Quality -	- Application	for Air Permit to	Construct/Oper	ate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOUI	RCE ID NO:	ES-051		
Methyl Isobutyl Carbinal (MIBC) usage				CONTROL DEVI	CE ID NO(S):	N/A		
OPERATING SCENARIO 1 OF 1				EMISSION POIN	. ,		EP-051	
DESCRIBE IN DETAILTHE EMISSION SOUR	RCE PROCESS (ATTACH FLOW D	IAGRAM):		,	. ,		
Methyl isobutyl carbinol is added from totes as			,	in Section 3.				
MIBC is not a listed HAP.								
APPROPRIATE FORM B1-B9 ON THE FOL	LOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B		Woodworking	(Form B4)		Manuf. o	of chemicals/co	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form B	32)	Coating/finish	ning/printing (F	Form B5)	Incinera	tion (Form B8)		•
Liquid storage tanks (Form B3)	,	Storage silos	/bins (Form B	6)	Other (F	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD				
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR	
IS THIS SOURCE SUBJECT TO?	SPS (SUBPARTS	?):		NESHAP	(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%	,	25 MAR-MAY	25			P-NOV 25		
	,	LUTANT EMIS	SIONS INF	ORMATION F	OR THIS SO	URCE		
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)				,	,		 	,-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)					İ		†	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})						1	
SULFUR DIOXIDE (SO2)	,						1	
NITROGEN OXIDES (NOx)							1	1
CARBON MONOXIDE (CO)							1	1
VOLATILE ORGANIC COMPOUNDS (VOC)		Material Balance	2.74	12.00	4.57	20.00	4.57	20.00
LEAD							1	1
OTHER							1	1
	OUS AIR PO	LLUTANT EMI	SSIONS IN	IFORMATION	FOR THIS S	OURCE		
		SOURCE OF		POTENTIAL	EMISSIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
N/A				,		,	1	
							1	1
							1	1
							1	1
ΤΟΧΙ	C AIR POLLU	JTANT EMISSI	ONS INFO	RMATION FO	R THIS SOU	RCE		
		SOURCE OF	ΓV	DECTED ACTUAL	EMICCIONIC AI	TED CONTRO	DI C / LIMITATI	ONC
		EMISSION	EXPECTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATION					ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/e	day	lk	b/yr
N/A								
								
Attachments: (1) emissions calculations and support	ting documentation	(2) indicate all reques	sted state and fe	ederal enforceable ne	ermit limits (e.a. ho	urs of operation	emission rates) a	and describe how


	ty - Application f	or Air Permit to Construct/Oper	rate	В9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-051	
Methyl Isobutyl Carbinal (MIBC) usage		CONTROL DEVICE ID NO(S):	N/A	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID I	NO(S): EP-051	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM)				
Methyl isobutyl carbinol is added from totes as a reagent in the Conce	entrator. See PFD	Figure 3 in Section 3.		
MIBC is not a listed HAP.				
MATERIALS ENTERING PROCESS - CONTINUOUS PRO	OCESS	MAX. DESIGN	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Methyl Isobutyl Carbinal (MIBC)	pounds	4.57	N/A	
MATERIALS ENTERING PROCESS - BATCH OPERA	TION	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS CAPACITY (UNIT/BATCH) LII		LIMITATION (UI	NIT/BATCH)
MAXIMUM DESIGN (BATCHES / HOUR):				
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A		CAPACITY ANNUAL FUEL USE		
COMMENTS:	-			

FORM C1

CONTROL DEVICE (FABRIC FILTER)

REVISED 09/22/16	NCDEQ/Div	ision of Air Quality	- Application for Air Permit to	Constru	ct/Operate				C1
CONTROL DEVICE ID NO:	CD-043	CONTROLS EMISS	SIONS FROM WHICH EMISSIC	N SOUR	CE ID NO(S	S): ES-043	a through ES-0	043g, ES-032, ES-042	, ES-047
EMISSION POINT (STACK) ID NO(S):	P-043	POSITION IN SERI	ES OF CONTROLS		NO.	1 OF	1 UNITS		
OPERATING SCE	ENARIO:								
1 OF 1			P.E. SEAL REQUIRED (PER	2q .0112)	? 🗸	YES		NO	
DESCRIBE CONTROL SYSTEM:									
Schust 2 module, size 1015, Model :	168, Pulse J	et Dust Collector	in a single configuration.						
A solid state timer provides sequent	tial pulsing	of the air valves.							
See control device PFD on the next	page.								
POLITIANTO COLLECTED.			DM DM		DM				
POLLUTANTS COLLECTED:			PM PM ₁₀		PM _{2.5}				
BEFORE CONTROL EMISSION RATE (LB/H	HR):		0.18 0.08		0.01				
CAPTURE EFFICIENCY:			95 % 95	%	95	%	<u></u> %		
CONTROL DEVICE EFFICIENCY.			99 % 99	%	00	0/	0/		
CONTROL DEVICE EFFICIENCY:			99 % 99	_ ′0 _	99	%			
CORRESPONDING OVERALL EFFICIENCY	Y:		94.05 % 94.05	%	94.05	%	%		
EFFICIENCY DETERMINATION CODE:			1		1				
TOTAL AFTER CONTROL EMISSION RATE	E (LB/HR):		0.002 0.0007		0.0001				
					0.0001	-			
PRESSURE DROP (IN H ₂ 0): MIN: -10 BULK PARTICLE DENSITY (LB/FT ³): 90	MAX: -20	GAUGE?	YES NO	14111.0		1417/445			
POLLUTANT LOADING RATE:	LB/HR	✓ GR/FT ³	INLET TEMPERATURE (°F): OUTLET TEMPERATURE (°F)			MAX 115 MAX 115			
	43,300		FILTER OPERATING TEMP (IVIAA 115			
INLET AIR FLOW RATE (ACFM): NO. OF COMPARTMENTS: 2		PER COMPARTMEN			H OF BAG	/IN)· 168			
		ACE AREA PER CAR		_	TER OF BA				
TOTAL FILTER SURFACE AREA (FT ²): 7,92		AIR TO CLOTH RA	, ,	DI) WIL	TEICOI BA	IO (II 1.). 0			
DRAFT TYPE: INDUCED/NEGAT		FORCED/POSITIVE		IATERIAL	: 🗆	WOVEN	✓ FELTED		
DESCRIBE CLEANING PROCEDURES:						PA	RTICLE SIZE DIS	STRIBUTION	
✓ AIR PULSE		SONIC		5	SIZE	WEIGHT %		CUMULATIVE	
REVERSE FLOW		SIMPLE BAG COLL	APSE	(MIC	RONS)	OF TOTAL		%	
☐ MECHANICAL/SHAKER		RING BAG COLLAR	PSE		0-1	0		0	
OTHER:				1	1-10	58		58	
DESCRIBE INCOMING AIR STREAM: Fan o			s and open areas into the unit	1	0-25	42		100	
which then intermittently purges to return material	teriai back onti	o the cpriveyor.		2	5-50	0		100	
				50)-100	0		100	
				>	100	0		100	
							Т	TOTAL = 100	
ON A SEPARATE PAGE, ATTACH A DIAGF	RAM SHOWIN	G THE RELATIONS	HIP OF THE CONTROL DEVIC	E TO ITS	EMISSION	SOURCE(S):			
COMMENTS:									

DMS and Mag Sep Baghouse (CD-043)

Product Loading and Conveying

ES-005

ES-007 - ES-013

ES-015

ES-024

ES-025

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-024				
Sorter Rejects Bin				CONTROL DEVI		CD-024		
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO	O(S):	EP-024	
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()	-	
Sorter rejects bin with bin vent filter. See PF		•						
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printing	g (Form B5)	Incinerat	ion (Form B8)		
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Form	n B6)	Other (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR	
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO		NESHAP	(SUBPARTS?):_			
PERCENTAGE ANNUAL THROUGHPUT (9	%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25		
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION I	FOR THIS SO	URCE		
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		(AFTER CONTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0061	0.0226	0.1214	0.5319	0.0061	0.0266
PARTICULATE MATTER<10 MICRONS (PM ₁₁	2)	AP-42	0.0029	0.0107	0.0574	0.2516	0.0029	0.0126
PARTICULATE MATTER<2.5 MICRONS (PM ₂	,	AP-42	0.0004	0.0016	0.0087	0.0381	0.0004	0.0019
SULFUR DIOXIDE (SO2)								
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	,							
OTHER								
	OOUS AIR POL	LUTANT EN	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF						
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
				,				,
TOXI	IC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	EV	DECTED ACTUAL	EMISSIONS AE	TED CONTRO	I C / I IMITATI	ONS
		EMISSION		PECTED ACTUAL	L EIVIISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr

EMISSION SOURCE (STORAGE SILO/BINS)

1 OF 1 PROCESS (ATTACH FL			EMISSION SC	DURCE ID NO: ES-024					
PROCESS (ATTACH FL									
PROCESS (ATTACH FL		Sorter Rejects Bin							
			EMISSION POINT(STACK) ID NO(S): EP-024						
	OW DIAGRAM): it pickups. See PFD Figu	ire 3 in S	ection 3.						
			DENSITY OF MATER	RIAL (LB/FT3): 170					
CUBIC FEET: 2,000									
		(OR)		WIDTH: 20 HEIGHT: 75					
•		729,708		ESIGN CAPACITY: 858,480					
		· ·		FILLED FROM					
	SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:			RAILCAR TRUCK STORAGE PILE OTHER: Upstream Process Units					
ERIAL UNLOADED FRO	OM SILO? Dropped								
RATE OF MATERIAL (TONS/HR): 98								
DING RATE OF MATER	IAL (TONS/HR): 98								
	HEIGHT: IROUGHPUT (TONS) FILLED OTO: Trucks FERIAL UNLOADED FROM GRATE OF MATERIAL (1)	ACTUAL: FILLED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:	CUBIC FEET: 2,000 HEIGHT: DIAMETER: (OR) ROUGHPUT (TONS) ACTUAL: 729,708 FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: OTHER: CO: Trucks CERIAL UNLOADED FROM SILO? Dropped	HEIGHT: DIAMETER: (OR) LENGTH: 25 IROUGHPUT (TONS) ACTUAL: 729,708 MAXIMUM DE FILLED MECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: TO: Trucks FERIAL UNLOADED FROM SILO? Dropped					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 NC	DEQ/Divisio	n of Air Quality	- Application	n for Air Permit to	Construct/Oper	ate		В			
EMISSION SOURCE DESCRIPTION:	SOURCE DESCRIPTION: EMISSION SOURCE ID NO: ES-025										
/IS Rejects Bin (Coarse Tails Bin)				CONTROL DEVICE ID NO(S): CD-025							
OPERATING SCENARIO 1 OF 1				EMISSION POINT (STACK) ID NO(S): EP-025							
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTACH FLOW	/ DIAGRAM):		. (=, .=	(-)-					
DMS rejects bin with bin vent filter. See PFD Figu	•										
-											
APPROPRIATE FORM B1-B9 ON THE FOLLO	WING PAGES	S):									
Coal,wood,oil, gas, other burner (Form B1)		<u></u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)			
Int.combustion engine/generator (Form B2)	=	nishing/printing	•		on (Form B8)	3 ' (,				
Liquid storage tanks (Form B3)		los/bins (Form	• • •	Other (Fo	. ,						
START CONSTRUCTION DATE: TBD			-	FACTURED: TBD	,	,					
MANUFACTURER / MODEL NO.: TBD				OP. SCHEDULE:	24 HR/DAY 7 D	DAY/WK 52 W	K/YR				
	(SUBPARTS				(SUBPARTS?):						
PERCENTAGE ANNUAL THROUGHPUT (%):	1	25 MAR-M	IAY 25	JUN-AUG	·	EP-NOV 25					
				FORMATION I							
*****		SOURCE OF		ED ACTUAL	1	POTENTIAL E	EMISSIONS	PIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTROLS / LIMITS)				
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		AP-42	0.0050	0.0187	0.1004	0.4396	0.0050	0.0220			
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0034	0.0088	0.0475	0.2079	0.0024	0.0104			
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0004	0.0013	0.0072	0.0315	0.0024	0.0016			
SULFUR DIOXIDE (SO2)		711 -42	0.0004	0.0010	0.0072	0.0010	0.0004	0.0010			
NITROGEN OXIDES (NOx)											
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (VOC)											
LEAD											
OTHER											
	S AIR POL	LUTANT EN	IISSIONS I	NFORMATION	FOR THIS S	OURCE					
	<u> </u>	SOURCE OF EXPECTED ACTUAL			T						
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR	POTENTIAL E		ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	Ib/hr	tons/yr	lb/hr	tons/yr			
TIALANDOOD AIN TOLLOTANT	OAO NO.	TAGTOR	10/111	toris/yi	15/111	toris/yi	15/111	toris/yi			
TOXIC A	IR POLLU	TANT EMISS	SIONS INFO	DRMATION FO	OR THIS SOU	RCE					
	1										
		SOURCE OF EMISSION	EX	PECTED ACTUAL	. EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/da	av	lb)/yr			
					,	,					
					1						
	<u> </u>										
	Ì										
	<u> </u>										
							!				

EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/Divis	ion of Air Quality - Ap	plication	for Air Permit to	Construct	Operate			86			
TION:			EMISSION	SOURCE	ID NO:	ES-025					
DMS Rejects Bin (Coarse Tails Bin)					CONTROL DEVICE ID NO(S): CD-025						
1 OF 1			EMISSION	POINT(ST	ACK) ID N	O(S):	EP-025				
		e 3 in Se	ction 3.								
			DENSITY OF MAT	ERIAL (LB	/FT3): 170						
CAPACITY CUBIC FEET: 2,000					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	DIAMETER:	(OR)		WIDTI	H: 20	HEIGH	Г: 75				
	ACTUAL:										
LLED	MECHANIC		•				D FROM				
	BELT CONVEYOR BUCKET ELEVATOR			TRUCK STORAG	SE PILE	am Process Un	nits				
	OTTLER.				O TTILITE	Оролос		110			
Trucks	M SILO? Dropped										
ATE OF MATERIAL (1	ΓONS/HR): 81										
IG RATE OF MATERI	AL (TONS/HR): 81										
	TION: Bin) 1 OF 1 OCESS (ATTACH FL d to the bin with dust CUBIC FEET: 2,000 HEIGHT: DIGHPUT (TONS) LLED Trucks ATE OF MATERIAL (**)	TION: Bin) 1 OF 1 OCESS (ATTACH FLOW DIAGRAM): d to the bin with dust pickups. See PFD Figur CUBIC FEET: 2,000 HEIGHT: DIAMETER: DIGHPUT (TONS) ACTUAL: LLED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:	TION: Bin) 1 OF 1 OCESS (ATTACH FLOW DIAGRAM): d to the bin with dust pickups. See PFD Figure 3 in Se CUBIC FEET: 2,000 HEIGHT: DIAMETER: (OR) INCHITY (TONS) ACTUAL: 603,126 LLED MECHANICALLY FILE SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Trucks ATE OF MATERIAL (TONS/HR): 81	TION: Bin) 1 OF 1 CONTROL 1 OF 1 CEMISSION CONTROL EMISSION CONTROL EMISSION CONTROL EMISSION COCESS (ATTACH FLOW DIAGRAM): d to the bin with dust pickups. See PFD Figure 3 in Section 3. CUBIC FEET: 2,000 HEIGHT: DIAMETER: ORAL: ORAL: ORAL: FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Trucks ATE OF MATERIAL (TONS/HR): 81	TION: Bin) 1 OF 1 CONTROL DEVICE IT EMISSION POINT(ST COESS (ATTACH FLOW DIAGRAM): d to the bin with dust pickups. See PFD Figure 3 in Section 3. DENSITY OF MATERIAL (LB CUBIC FEET: 2,000 HEIGHT: DIAMETER: (OR) LENGTH: 25 WIDTH MECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Trucks DENSITY OF MATERIAL (LB WECHANICALLY FILLED Trucks ATE OF MATERIAL (TONS/HR): 81	Bin) CONTROL DEVICE ID NO(S): 1 OF 1 DEMISSION POINT(STACK) ID N OCESS (ATTACH FLOW DIAGRAM): d to the bin with dust pickups. See PFD Figure 3 in Section 3. DENSITY OF MATERIAL (LB/FT3): 170 TONS: 165 HEIGHT: DIAMETER: (OR) LENGTH: 25 WIDTH: 20 INGRIPUT (TONS) ACTUAL: 603,126 MAXIMUM DESIGN CAPACITY: LED MECHANICALLY FILLED SCREW CONVEYOR RAILCAN BELT CONVEYOR TRUCK BUCKET ELEVATOR OTHER: Trucks IAL UNLOADED FROM SILO? Dropped	EMISSION SOURCE ID NO: ES-025 CONTROL DEVICE ID NO(S): CD-025 1 OF 1 EMISSION POINT(STACK) ID NO(S): OCESS (ATTACH FLOW DIAGRAM): d to the bin with dust pickups. See PFD Figure 3 in Section 3. DENSITY OF MATERIAL (LB/FT3): 170 TONS: 165 HEIGHT: DIAMETER: (OR) LENGTH: 25 WIDTH: 20 HEIGHT OUGHPUT (TONS) ACTUAL: 603,126 MAXIMUM DESIGN CAPACITY: 709,560 LED MECHANICALLY FILLED FILLE SCREW CONVEYOR RAILCAR BUCKET ELEVATOR TRUCK BUCKET ELEVATOR TRUCK OTHER: Upstrei	EMISSION SOURCE ID NO: ES-025 1 OF 1			

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В			
EMISSION SOURCE DESCRIPTION:	SSION SOURCE DESCRIPTION:					EMISSION SOURCE ID NO: ES-013					
Concentrate Load Out Bin	Concentrate Load Out Bin				CONTROL DEVICE ID NO(S): CD-013						
OPERATING SCENARIO 1 OF 1				EMISSION POINT (STACK) ID NO(S): EP-013							
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /						
Spodumene concentrate load out bin with bin ve		•									
E APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):					-				
Coal,wood,oil, gas, other burner (Form B1)		<u>~</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)			
Int.combustion engine/generator (Form B2)	nishing/printing	,	=	on (Form B8)	3 . (,					
Liquid storage tanks (Form B3) Storage silos/bir				• '	Other (Fo						
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-					
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR				
	S (SUBPARTS	(2)· OOO	2,4 20,125		(SUBPARTS?):	2,11,1111 02 11					
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	, , =	SEP-NOV 25					
				FORMATION I							
	.,	SOURCE OF		TED ACTUAL	T	POTENTIAL I	EMISSIONS				
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		AP-42	0.0038	0.0143	0.0768	0.3365	0.0038	0.0168			
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0038	0.0068	0.0363	0.1592	0.0038	0.0080			
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})		AP-42	0.0003	0.0010	0.0055	0.1332	0.0003	0.0012			
SULFUR DIOXIDE (SO2)		A1 -42	0.0003	0.0010	0.0033	0.0241	0.0003	0.0012			
NITROGEN OXIDES (NOx)											
CARBON MONOXIDE (CO)											
VOLATILE ORGANIC COMPOUNDS (VOC)											
LEAD											
OTHER								 			
	IS AIR POI	I IITANT FI	MISSIONS I	NFORMATION	I FOR THIS S	CURCE					
HAZARDOO	T T		ī	ECTED ACTUAL POTENTIAL EMISSIONS							
		SOURCE OF									
HAZARDOUS AIR ROLLUTANT	CAS NO.	EMISSION	(AFTER CO	NTROLS / LIMITS)	(BEFORE CONTR	1		ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	ID/III	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
		<u> </u>	-				——	<u> </u>			
		-									
		1						 			
		<u> </u>	-				——	<u> </u>			
		1						 			
		1						 			
TOVIC	VID DOLLII	L TANT EMIS	L SIONS INE	DRMATION FO	D TUIS SOLI	DCE.					
TOXICF	AIR POLLO	T	T T	JRIVIA I ION FO	JK THIS SOU	RCE					
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATIO	ONS			
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		He /le m	15/4		15-	/s em			
TOXIC AIR POLLUTANT	CAS NO.	FACTOR	+	lb/hr	lb/d	ау	ID	o/yr			
		<u> </u>	-				 				
		-			-						
	+	1	-				 				
	+	1	-				 				
		1			-						
	1	1	-								
		<u> </u>	<u> </u>								

EMISSION SOURCE (STORAGE SILO/BINS)

IDTION:									
IPTION:			EMISSION SC	DURCE ID NO: ES-013					
			CONTROL DEVICE ID NO(S): CD-013						
1 OF 1			EMISSION POINT(STACK) ID NO(S): EP-013						
		with bin	vent filters. See PFD I	Figure 3 in Section 3.					
mene Concentrate			DENSITY OF MATER	IAL (LB/FT3): 172					
· · · · · · · · · · · · · · · · · · ·									
		(OR)		WIDTH: HEIGHT:					
-		461.652		SIGN CAPACITY: 543,120					
. ,				FILLED FROM					
	BELT CONVEYOR			RAILCAR TRUCK STORAGE PILE OTHER: Upstream Process Units					
ERIAL UNLOADED FRO	M SILO? Conveyor								
RATE OF MATERIAL (ONS/HR): 62								
DING RATE OF MATERI	AL (TONS/HR): 62								
	PROCESS (ATTACH FLO mene Concentrate CUBIC FEET: 60,000 HEIGHT: 90 ROUGHPUT (TONS) FILLED O: Conveyors that lead to ERIAL UNLOADED FRO	PROCESS (ATTACH FLOW DIAGRAM): Driveyed to the load out bins which are controlled mene Concentrate CUBIC FEET: 60,000 HEIGHT: 90 DIAMETER: 70 ROUGHPUT (TONS) FILLED MECHANIC SCREW CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER:	PROCESS (ATTACH FLOW DIAGRAM): Denveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bin Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Conveyed to the load out bins which are controlled with bins Convey	PROCESS (ATTACH FLOW DIAGRAM): proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bin vent filters. See PFD I proveyed to the load out bins which are controlled with bins vent filters. See PFD I proveyed to the load out bins which are controlled with bins vent filters. See PFD I proveyed to the load out bins which are controlled with bins vent filters. See PFD I proveyed to the load out bins which are controlled with bins vent filters. See PFD I proveyed to the load out bins which are controlled with					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	/ - Application	n for Air Permit to	Construct/Ope	rate		В	
EMISSION SOURCE DESCRIPTION:				EMISSION SOU	RCE ID NO:	ES-012			
oncentrate Load Out Bin			CONTROL DEVI	CE ID NO(S):	CD-012				
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO	O(S):	EP-012		
DESCRIBE IN DETAILTHE EMISSION SO Spodumene concentrate load out bin with b					,				
APPROPRIATE FORM B1-B9 ON THE F	OLLOWING PAGE	S):							
Coal,wood,oil, gas, other burner (Form	B1)	Woodwork	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)	
Int.combustion engine/generator (Form	n B2)	Coating/fir	nishing/printing	g (Form B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)		√ Storage si	ilos/bins (Form	n B6)	Other (Fo	orm B9)			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD					
MANUFACTURER / MODEL NO.: TBD			EXPECTED (OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	/K/YR		
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-M	1AY 25	JUN-AUG	25	SEP-NOV 25			
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION I	FOR THIS SO	URCE			
		SOURCE OF	EXPECT	TED ACTUAL		POTENTIAL	EMISSIONS		
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.0038	0.0143	0.0768	0.3365	0.0038	0.0168	
PARTICULATE MATTER<10 MICRONS (PM ₁	(0.	AP-42	0.0018	0.0068	0.0363	0.1592	0.0018	0.0080	
PARTICULATE MATTER<2.5 MICRONS (PM		AP-42	0.0003	0.0010	0.0055	0.0241	0.0003	0.0012	
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)									
CARBON MONOXIDE (CO)									
VOLATILE ORGANIC COMPOUNDS (VOC	:)								
LEAD	·)	1							
OTHER		1							
	DOUS AIR POL	LUTANT EN	/ISSIONS I	NFORMATIO	V FOR THIS S	SOURCE			
	1	SOURCE OF	T		POTENTIAL EMISSIONS				
		EMISSION			(BEFORE CONT	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	Ib/hr	tons/yr	
TIAZANDOUS AIN FOLLUTANT	CAS NO.	TACTOR	10/111	toris/yi	10/111	toris/yi	10/111	toris/yi	
		1							
		1							
TOX	IC AIR POLLU	TANT FMISS	SIONS INFO	ORMATION FO	OR THIS SOU	IRCE			
10%	I DELEG	1	T						
		SOURCE OF EMISSION		PECTED ACTUAL					
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr	
					ļ				
		ļ							
					L		<u> </u>		
Attackments (4) swipsians salaulations and sure	author dans mark the	(O) indicate all		al faulanci antance del	a manusik lineika /	harrie of analysis		- \	

EMISSION SOURCE (STORAGE SILO/BINS)

NCDEQ/Divis	ion of Air Quality - Ap	plication	i for Ai	r Permit to Cons	struct/0	Operate			B6
TION:			_	EMISSION SOL	JRCE II	D NO:	ES-012		
			CONTROL DEVICE ID NO(S): CD-012						
1 OF 1				EMISSION POIL	NT(STA	ACK) ID N	O(S):	EP-012	
		l with bin	vent fil	lters. See PFD Fi	gure 3	in Section	13.		
ne Concentrate			DENS	ITY OF MATERIA	AL (LB/	FT3): 172			
					WIDTH	:	HEIGH	 Г:	
	ACTUAL:								
LLED								FROM	
	BUCKET ELEVATOR					TRUCK STORAG	GE PILE	am Process U	nits
				I					
		1							
ATE OF MATERIAL (T	ONS/HR): 62								
IG RATE OF MATERIA	AL (TONS/HR): 62								
	TION: 1 OF 1 DCESS (ATTACH FLO eyed to the load out be The Concentrate CUBIC FEET: 60,000 HEIGHT: 90 UGHPUT (TONS) LED Conveyors that lead to ALL UNLOADED FRO ATE OF MATERIAL (T	TION: 1 OF 1 DCESS (ATTACH FLOW DIAGRAM): eyed to the load out bins which are controlled to the load out bins wh	TION: 1 OF 1 DCESS (ATTACH FLOW DIAGRAM): eyed to the load out bins which are controlled with bins eyed to the load out bins which are controlled with bins eyed to the load out bins which are controlled with bins eyed to the load out bins which are controlled with bins eyed to the load out bins eyed to the load out bins eyed to the load out bins eyed to the load out bins eyed to the load out bins eyed to the load out bins eyed to the load out bins eyed to the load out bin	TION: 1 OF 1 DCESS (ATTACH FLOW DIAGRAM): eyed to the load out bins which are controlled with bin vent fil ne Concentrate CUBIC FEET: 60,000 HEIGHT: 90 DIAMETER: 70 (OR) LED MECHANICALLY FILLED SCREW CONVEYOR BELT CONVEYOR BELT CONVEYOR BUCKET ELEVATOR OTHER: Conveyors that lead to truck or railcar loading AL UNLOADED FROM SILO? Conveyor	TION: EMISSION SOL CONTROL DEV CONTROL DEV CONTROL DEV EMISSION POIL	TION: ### MISSION SOURCE ID CONTROL DEVICE ID EMISSION POINT(ST/ COESS (ATTACH FLOW DIAGRAM): eyed to the load out bins which are controlled with bin vent filters. See PFD Figure 3 ### DENSITY OF MATERIAL (LB/ CUBIC FEET: 60,000 ### HEIGHT: 90 ### DIAMETER: 70 ### MAXIMUM DESIGN C/ LED ### MECHANICALLY FILLED ### SCREW CONVEYOR ### BUCKET ELEVATOR ### OTHER: CONVEYOR ### OTHER: CONVEYOR ### OTHER: ### CONVEYOR ### OTHER: ### CONVEYOR ### OTHER: ### CONVEYOR ### OTHER: ### CONVEYOR ### OTHER: ### ATE OF MATERIAL (TONS/HR): 62	CONTROL DEVICE ID NO(S): 1 OF 1 DESS (ATTACH FLOW DIAGRAM): eyed to the load out bins which are controlled with bin vent filters. See PFD Figure 3 in Section The Concentrate DENSITY OF MATERIAL (LB/FT3): 172 CUBIC FEET: 60,000 TONS: 5,100 HEIGHT: 90 DIAMETER: 70 (OR) LENGTH: WIDTH: UGHPUT (TONS) ACTUAL: 461,652 MAXIMUM DESIGN CAPACITY: LED MECHANICALLY FILLED SCREW CONVEYOR RAILCAL BUCKET ELEVATOR OTHER: Conveyors that lead to truck or railcar loading IAL UNLOADED FROM SILO? Conveyor	EMISSION SOURCE ID NO: ES-012 CONTROL DEVICE ID NO(S): CD-012 EMISSION POINT(STACK) ID NO(S): DEMISSION POI	EMISSION SOURCE ID NO: ES-012 CONTROL DEVICE ID NO(S): CD-012 EMISSION POINT(STACK) ID NO(S): EP-012 DOESS (ATTACH FLOW DIAGRAM): eyed to the load out bins which are controlled with bin vent filters. See PFD Figure 3 in Section 3. TONS: 5,100 HEIGHT: 90 DIAMETER: 70 IGNE MECHANICALLY FILLED MECHANICALLY FILLED MECHANICALLY FILLED RAILCAR BUCKET ELEVATOR OTHER: OTHER: CONVEYOR BUCKET ELEVATOR OTHER: DENSITY OF MATERIAL (LB/FT3): 172 TONS: 5,100 HEIGHT: WIDTH: HEIG

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В		
EMISSION SOURCE DESCRIPTION:				EMISSION SOU						
Concentrate Truck Load Out Belt Feeder	centrate Truck Load Out Belt Feeder			EMISSION SOURCE ID NO: ES-011 CONTROL DEVICE ID NO(S): N/A						
OPERATING SCENARIO 1 OF 1				1	IT (STACK) ID NO		EP-011			
DESCRIBE IN DETAILTHE EMISSION SOL	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):	•		- ()	-			
Spodumene concentrate load out belt feede		•								
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):								
Coal,wood,oil, gas, other burner (Form	B1)	Woodwor	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (Fo	rm B7)		
Int.combustion engine/generator (Form	B2)	Coating/fi	nishing/printin	g (Form B5)	Incinerat	ion (Form B8)				
Liquid storage tanks (Form B3)		Storage s	ilos/bins (Forn	n B6)	United (For	orm B9)				
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD	1					
MANUFACTURER / MODEL NO.: TBD			EXPECTED	OP. SCHEDULE:	24 HR/DAY 7	DAY/WK 52 W	K/YR			
IS THIS SOURCE SUBJECT TO?	NSPS (SUBPARTS	S?): OOO	•	NESHAP	(SUBPARTS?):_					
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB	25 MAR-N	//AY 25	JUN-AUG	25	SEP-NOV 25				
CRITE	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION .	FOR THIS SO	URCE				
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL I	POTENTIAL EMISSIONS			
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT		(AFTER CONTROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
PARTICULATE MATTER (PM)		AP-42	0.0768	0.2860	0.0768	0.3365	0.0768	0.3365		
PARTICULATE MATTER<10 MICRONS (PM ₁)	٥)	AP-42	0.0363	0.1353	0.0363	0.1592	0.0363	0.1592		
PARTICULATE MATTER<2.5 MICRONS (PM;		AP-42	0.0055	0.0205	0.0055	0.0241	0.0055	0.0241		
SULFUR DIOXIDE (SO2)	2.37									
NITROGEN OXIDES (NOx)										
CARBON MONOXIDE (CO)										
VOLATILE ORGANIC COMPOUNDS (VOC)									
LEAD	,									
OTHER										
	OOUS AIR POL	LUTANT EI	MISSIONS I	NFORMATIO	V FOR THIS S	OURCE		•		
		SOURCE OF	1							
				NTROLS / LIMITS)	(BEFORE CONT	(AFTER CONT	ROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
				,		,		,		
TOX	IC AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE				
		SOURCE OF	EV	PECTED ACTUAI	EMISSIONS AE	TED CONTRO	I C / I IMITATI	ONS		
		EMISSION		PECTED ACTUAL	- EIVIISSIONS AF	TER CONTRO	LS / LIMITATI	ONS		
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	lb	o/yr		
				·						

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Oper	rate	B9		
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-011			
Concentrate Truck Load Out Belt Feeder		CONTROL DEVICE ID NO(S): N/A				
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID I	NO(S): EP-011			
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):						
Spodumene concentrate load out belt feeder. See PFD Figure 3 in Section	on 3.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)		
Spodumene Concentrate	tons	62	N/A			
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)		
MAXIMUM DESIGN (BATCHES / HOUR):						
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):				
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A			
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL USE	E: N/A			
COMMENTS:						

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-015		
Truck Load Out Stacker Conveyor				CONTROL DEVI		N/A		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-015	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):					
Spodumene concentrate truck load out conveyo		•						
E APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		<u>~</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B2		=	nishing/printin	,	=	on (Form B8)	9=/ (: -:	= . ,
Liquid storage tanks (Form B3)	,	_	ilos/bins (Form	,	U Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD				
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	,	SEP-NOV 25		
				FORMATION I				
		SOURCE OF		TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0768	0.2860	0.0768	0.3365	0.0768	0.3365
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0363	0.1353	0.0363	0.1592	0.0363	0.1592
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0055	0.0205	0.0055	0.0241	0.0055	0.0241
	SULFUR DIOXIDE (SO2)		0.0000	0.0200	0.0000	0.0241	0.0000	0.0241
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IIS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	I FOR THIS S	OURCE		
7771211120	1	SOURCE OF	ī	XPECTED ACTUAL POTENTIAL EMISSIONS				
		EMISSION						DOLO (LIMITO)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	ntrols / Limits) tons/yr	Ib/hr	tons/yr	lb/hr	ROLS / LIMITS) tons/yr
HAZARDOUS AIR FOLLUTANT	CAS NO.	PACTOR	10/111	toris/yi	10/111	toris/yi	10/111	toris/yi
TOXIC	AIR POLLIE	TANT FMISS	SIONS INFO	DRMATION FO	DR THIS SOLI	RCF	<u> </u>	<u> </u>
TOXIO	T OLLO	T	T T	JAMATION I	ok iiiio ooo	NOL .		
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	av	Ib.	/yr
TOXIO AIR POLLUTARI	CAS NO.	TACTOR		ID/III	ID/G	ау	ID	// yi
		 	 					
		 	 					
		 	 					
		1						
	I	1	ı		1		l .	

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality -	Application f	or Air Permit to Construct/Ope	rate	B9	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-015		
Truck Load Out Stacker Conveyor		CONTROL DEVICE ID NO(S): N/A			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-015		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):					
Spodumene concentrate truck load out conveyor. See PFD Figure 3 in Se	ection 3.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROCE	ESS	MAX. DESIGN	REQUESTED	CAPACITY	
ТҮРЕ	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)	
Spodumene Concentrate	tons	62	N/A		
MATERIALS ENTERING PROCESS - BATCH OPERATION	N	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)	
MAXIMUM DESIGN (BATCHES / HOUR):					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):			
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A		
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A		
COMMENTS:					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16 N	CDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-010		
Rail Load Out Conveyor #1				CONTROL DEVI		N/A		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-010	
DESCRIBE IN DETAILTHE EMISSION SOURC	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Spodumene concentrate load out conveyor. See	,	•						
E APPROPRIATE FORM B1-B9 ON THE FOLLO	OWING PAGE	S):					-	
Coal,wood,oil, gas, other burner (Form B1)		<u>~</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)
Int.combustion engine/generator (Form B2)		=	nishing/printing	,	=	on (Form B8)	3 . (,
Liquid storage tanks (Form B3)			ilos/bins (Form	• ,	Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	//AY 25	JUN-AUG	, , , , ,	SEP-NOV 25		
				FORMATION I				
		SOURCE OF		TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTI	POLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0087	0.0323	0.0087	0.0380	0.0087	0.0380
PARTICULATE MATTER(10 MICRONS (PM ₁₀)		AP-42	0.0029	0.0106	0.0029	0.0125	0.0029	0.0125
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0004	0.0016	0.0023	0.0019	0.0023	0.0019
SULFUR DIOXIDE (SO2)		711 - 42	0.0004	0.0010	0.0004	0.0013	0.0004	0.0013
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE		
77712717300	T	SOURCE OF	ī	EXPECTED ACTUAL POTENTIAL EMISSIONS				
		EMISSION						DOLO (LIMITO)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	ntrols / Limits) tons/yr	lb/hr	tons/yr	lb/hr	ROLS / LIMITS) tons/yr
HAZARDOUS AIR FOLLUTANT	CAS NO.	PACTOR	10/111	toris/yi	10/111	toris/yi	ID/III	toris/yi
TOYIC	VIR POLLUI	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLL	RCF		
TOXIOF	T OLLO	T	T T	JAMATION I	ok mio oco	NOL .	<u> </u>	
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	21/	lh.	/yr
TOXIC AIR FOLLUTAIN	CAS NO.	TACTOR		ID/III	ID/Q	ау	ID	7 yı
							 	
	1	+						
							 	
	+	 	 					
	†	 	 		1		<u> </u>	
	ı	ı	I		I			

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Oper	ate	B9	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-010			
Rail Load Out Conveyor #1		CONTROL DEVICE ID NO(S): N/A			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-010		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):					
Spodumene concentrate load out conveyor. See PFD Figure 3 in Section	n 3.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC		MAX. DESIGN	REQUESTED		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(
Spodumene Concentrate	tons	62	N/A		
	┼──				
	 				
	 				
	 				
	<u> </u>				
	†				
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY	
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)	
	<u> </u>				
	<u> </u>				
	<u> </u>				
	<u> </u>				
	<u> </u>				
	<u> </u>				
MAXIMUM DESIGN (BATCHES / HOUR):					
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	(R):			
FUEL USED: N/A		MUM FIRING RATE (MILLION BT			
MAX. CAPACITY HOURLY FUEL USE: N/A COMMENTS:	REQUESTED	CAPACITY ANNUAL FUEL USE	:: N/A		
COMMENTS:					

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-009				
Rail Load Out Conveyor #2				CONTROL DEVI		N/A		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-009	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Spodumene concentrate load out conveyor. See	,							
E APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1)		<u>—</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)
Int.combustion engine/generator (Form B2)			nishing/printin	•		on (Form B8)	9 (,
Liquid storage tanks (Form B3)		_	Storage silos/bins (Form B6)					
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		•		
MANUFACTURER / MODEL NO.: TBD			T	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):		25 MAR-N	MAY 25	JUN-AUG	· / =	SEP-NOV 25		
				FORMATION I				
		SOURCE OF	7	TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTI	POLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0087	0.0323	0.0087	0.0380	0.0087	0.0380
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0029	0.0106	0.0029	0.0125	0.0029	0.0125
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0023	0.0016	0.0023	0.0019	0.0023	0.0019
SULFUR DIOXIDE (SO2)		711-42	0.0004	0.0010	0.0004	0.0013	0.0004	0.0013
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	IS AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE		
TALANSO	T	SOURCE OF	1		1	POTENTIAL I	EMISSIONS	
		EMISSION						DOLO (LIMITO)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	ntrols / Limits) tons/yr	lb/hr	tons/yr	lb/hr	ROLS / LIMITS)
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	ID/III	toris/yi	10/111	toris/yi	ID/III	tons/yr
TOYIC	AIR POLLIE	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLL	RCF		
TOXIO	T OLLO	T T		JAMATION I	ok mio oco	NOL .	<u> </u>	
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	av	lh.	/yr
TOXIO AIR I OLLOTARI	OAC NO.	TAGTOR		15/111	ib/di	ц	15.	7 yı
	+							
	+	 	1					
	+							
	+	 	1		1		<u> </u>	
		 			1			
	ı	I	I		I			

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-009	
Rail Load Out Conveyor #2		CONTROL DEVICE ID NO(S):	N/A	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-009	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Spodumene concentrate load out conveyor. See PFD Figure 3 in Section	n 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Spodumene Concentrate	tons	62	N/A	
	1			
	+			
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	
1112	ONTO	ON NOTE (ONLINE KEOLI)	Elivility (OI	WITTER (TOTT)
	+			
	+			
	-			
MAXIMUM DESIGN (BATCHES / HOUR):	1			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	ICDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOUR	RCE ID NO:	ES-008		
Rail Load Out Conveyor #3				CONTROL DEVI		N/A		
OPERATING SCENARIO 1 OF 1					T (STACK) ID NO		EP-008	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTACH FLOV	V DIAGRAM):		(- /			
Spodumene concentrate load out conveyor. Se	,							
APPROPRIATE FORM B1-B9 ON THE FOLL	OWING PAGE	S):					-	
Coal,wood,oil, gas, other burner (Form B1)		<u>—</u>	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	m B7)
Int.combustion engine/generator (Form B2			nishing/printing	•		on (Form B8)	9 (,
Liquid storage tanks (Form B3)	,		ilos/bins (Form	• ,	U Other (Fo			
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD		-		
MANUFACTURER / MODEL NO.: TBD			1	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	S (SUBPARTS	(2). 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%):	25 MAR-N	//AY 25	JUN-AUG	· / =	SEP-NOV 25			
				FORMATION I				
	.,	SOURCE OF		TED ACTUAL	1	POTENTIAL I	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTR		(AFTER CONTI	DOLC (LIMITC)
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0087	0.0323	0.0087	0.0380	0.0087	0.0380
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0029	0.0106	0.0029	0.0125	0.0029	0.0125
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0004	0.0016	0.0023	0.0019	0.0023	0.0019
SULFUR DIOXIDE (SO2)		711-42	0.0004	0.0010	0.0004	0.0013	0.0004	0.0013
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD								
OTHER								
	US AIR POI	I IITANT FI	NISSIONS I	NFORMATION	FOR THIS S	OURCE		
TALANDO	T	SOURCE OF						
		EMISSION						DOLO (LIMITO)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	lb/hr	ntrols / Limits) tons/yr	lb/hr	tons/yr	lb/hr	ROLS / LIMITS)
HAZARDOUS AIR FOLLUTANT	CAS NO.	FACTOR	10/111	toris/yi	10/111	toris/yi	ID/III	tons/yr
TOYIC	AIR POLLIE	TANT FMISS	SIONS INFO	DRMATION FO	OR THIS SOLL	RCF		
TOXIO	T OLLO	T T	T T	JAMATION I	ok mio oco	NOL .	<u> </u>	
		SOURCE OF	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATION	ONS
TOXIC AIR POLLUTANT	CAS NO.	EMISSION FACTOR		lb/hr	lb/d	av	lh.	/yr
TOXIO AIR I GEEGTART	OAC NO.	TAGTOR		15/111	ib/di	ц	15.	7 yı
	+							
	+	 	 					
	1							
	1							
	1				1			
	ı	I	ı		I			

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (OTHER)

	- Application f	for Air Permit to Construct/Oper	ate	B9	
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: ES-008			
Rail Load Out Conveyor #3		CONTROL DEVICE ID NO(S): N/A			
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID N	NO(S): EP-008		
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM): Spodumene concentrate load out conveyor. See PFD Figure 3 in Sectior	n 3				
Georgian State Control out South Span State Control of the South	10.				
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	CAPACITY		
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(I		
Spodumene Concentrate	tons	62	N/A		
·	1	†			
	1	†			
	1	1			
	<u> </u>				
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUESTED		
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	NIT/BATCH)	
	<u> </u>				
	 	 			
	 	 			
	<u> </u>	 			
	+	+			
	+	+			
	+	+ +			
TO A THE DESIGN AS A TOLIFO A HOURS.	<u> </u>	<u> </u>			
MAXIMUM DESIGN (BATCHES / HOUR): PEOLIESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	/D\.			
REQUESTED LIMITATION (BATCHES / HOUR):			FLUIDA, NUA		
FUEL USED: N/A MAX. CAPACITY HOURLY FUEL USE: N/A		IMUM FIRING RATE (MILLION BT D CAPACITY ANNUAL FUEL USE			
COMMENTS:	REGULUTE	OAFAOITT ANNOALT OLL GOL	:. N/A		

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Application	n for Air Permit to	o Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:		EMISSION SOU	RCE ID NO:	ES-007				
Rail Load Out Conveyor #4				CONTROL DEVI		N/A		
OPERATING SCENARIO 1 OF 1					IT (STACK) ID NO		EP-007	
DESCRIBE IN DETAILTHE EMISSION SO	JRCE PROCESS (ATTACH FLOV	V DIAGRAM):			- ()		
Spodumene concentrate load out conveyor.								
APPROPRIATE FORM B1-B9 ON THE FO	DLLOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form	B1)	Woodworl	king (Form B4)	Manuf. o	f chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form	*		nishing/printin	•		ion (Form B8)	• (,
Liquid storage tanks (Form B3)	•	Storage s	ilos/bins (Forn	n B6)	Other (Fo	orm B9)		
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD)			
MANUFACTURER / MODEL NO.: TBD				OP. SCHEDULE:		DAY/WK 52 W	K/YR	
	NSPS (SUBPARTS	i?): 000			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (,	25 MAR-N	MAY 25	JUN-AUG	, , =	SEP-NOV 25		
	RIA AIR POLL	UTANT EMI	SSIONS IN	FORMATION	FOR THIS SO	URCE		
		SOURCE OF	EXPEC	TED ACTUAL		POTENTIAL	EMISSIONS	
	EMISSION		NTROLS / LIMITS)	(BEFORE CONT		1	ROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0087	0.0323	0.0087	0.0380	0.0087	0.0380
PARTICULATE MATTER<10 MICRONS (PM ₁	٥)	AP-42	0.0029	0.0106	0.0029	0.0125	0.0029	0.0125
PARTICULATE MATTER<2.5 MICRONS (PM		AP-42	0.0004	0.0016	0.0004	0.0019	0.0004	0.0019
SULFUR DIOXIDE (SO2)	2.37							
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)							
LEAD	/							
OTHER								
	OOUS AIR POL	LUTANT EN	MISSIONS I	NFORMATIO	N FOR THIS S	OURCE		
		SOURCE OF				POTENTIAL	EMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONTROLS / LIMITS) (AFTER CONT			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
			,					12112, 31
TOX	IC AIR POLLU	TANT EMISS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE		
		SOURCE OF	ΓV	DECTED ACTUAL	EMICCIONE AE	TER CONTRO	LC / LIMITATI	ONE
		EMISSION	EX	PECTED ACTUAL	L EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	lay	Ib	o/yr
						-		

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (OTHER)

REVISED 09/22/16 NCDEQ/Division of Air Quality	- Application f	or Air Permit to Construct/Ope	rate	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO:	ES-007	
Rail Load Out Conveyor #4		CONTROL DEVICE ID NO(S):	N/A	
OPERATING SCENARIO: 1 OF 1		EMISSION POINT (STACK) ID	NO(S): EP-007	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):				
Spodumene concentrate load out conveyor. See PFD Figure 3 in Section	n 3.			
MATERIALS ENTERING PROCESS - CONTINUOUS PROC	ESS	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/HR)	LIMITATION(UNIT/HR)
Spodumene Concentrate	tons	62	N/A	
	1			
	+			
MATERIALS ENTERING PROCESS - BATCH OPERATION	ON	MAX. DESIGN	REQUESTED	CAPACITY
TYPE	UNITS	CAPACITY (UNIT/BATCH)	LIMITATION (UI	
1112	ONTO	ON NOTE (ONLINE KEOLI)	Elivility (OI	WITTER (TOTT)
	+			
	+			
MAXIMUM DESIGN (BATCHES / HOUR):	1			
REQUESTED LIMITATION (BATCHES / HOUR):	(BATCHES/Y	R):		
FUEL USED: N/A	TOTAL MAXI	MUM FIRING RATE (MILLION B	TU/HR): N/A	
MAX. CAPACITY HOURLY FUEL USE: N/A	REQUESTED	CAPACITY ANNUAL FUEL US	E: N/A	
COMMENTS:				

SPECIFIC EMISSION SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 09/22/16	NCDEQ/Divisio	n of Air Quality	y - Applicatio	n for Air Permit to	Construct/Ope	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: ES-005				
Rail Load Out Station Feed Bin				CONTROL DEVI		CD-005		
OPERATING SCENARIO 1 OF 1				t	T (STACK) ID NO		EP-005	
DESCRIBE IN DETAILTHE EMISSION SOUR	CE PROCESS (ATTACH FLOV	W DIAGRAM):		, - /			
Rail Load Out Station Feed Bin with bin vent fi		•						
E APPROPRIATE FORM B1-B9 ON THE FOL	LOWING PAGE	S):						
Coal,wood,oil, gas, other burner (Form B1	1)	Woodwor	king (Form B4)	Manuf. of	chemicals/coa	atings/inks (For	rm B7)
Int.combustion engine/generator (Form B	•		nishing/printin	•		on (Form B8)	,	,
Liquid storage tanks (Form B3)	,	✓ Storage s	Storage silos/bins (Form B6)					
START CONSTRUCTION DATE: TBD			DATE MANU	FACTURED: TBD				
MANUFACTURER / MODEL NO.: TBD			I	OP. SCHEDULE:	24 HR/DAY 7 [DAY/WK 52 W	K/YR	
	PS (SUBPARTS	S?); OOO			(SUBPARTS?):			
PERCENTAGE ANNUAL THROUGHPUT (%)		25 MAR-N	MAY 25	JUN-AUG	· / =	SEP-NOV 25		
				FORMATION I				
		SOURCE OF	T	TED ACTUAL		POTENTIAL I	FMISSIONS	
		EMISSION		NTROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42	0.0038	0.0143	0.0768	0.3365	0.0038	0.0168
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.0018	0.0068	0.0363	0.1592	0.0018	0.0080
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.0003	0.0010	0.0055	0.0241	0.0003	0.0012
SULFUR DIOXIDE (SO2)		7	0.0000	0.00.0	0.0000	0.02	0.000	0.00.12
NITROGEN OXIDES (NOx)								
CARBON MONOXIDE (CO)								
VOLATILE ORGANIC COMPOUNDS (VOC)								
LEAD		1			1			
OTHER								
	OUS AIR POL	LUTANT EI	MISSIONS I	NFORMATION	V FOR THIS S	OURCE	<u> </u>	<u> </u>
	1	SOURCE OF	EXPECTED ACTUAL POTENTIAL EMI			EMISSIONS		
		EMISSION		NTROLS / LIMITS)				ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT	CAS NO.	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
III DOGO AIRT GEEGI FART	GAG NO.	17101011	15/111	101107 y1	15/111	torioryi	10/111	torioryi
					İ			
					İ			
TOXIC	AIR POLLU	TANT EMIS	SIONS INFO	ORMATION FO	OR THIS SOU	RCE	<u>'</u>	<u>'</u>
		T						
		SOURCE OF EMISSION	EX	PECTED ACTUAL	EMISSIONS AF	TER CONTRO	LS / LIMITATI	ONS
TOXIC AIR POLLUTANT	CAS NO.	FACTOR		lb/hr	lb/d	ay	lb	/yr
						•		,
			_		_		_	

Attachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (STORAGE SILO/BINS)

REVISED 09/22/16	NCDEQ/Divis	sion of Air Quality - Appl	ication	for Air Permit to Co	onstruct/Operate		В6			
EMISSION SOURCE DESCRIP	TION:			EMISSION S	OURCE ID NO:	ES-005				
Rail Load Out Station Feed Bin				CONTROL D	EVICE ID NO(S):	CD-005				
OPERATING SCENARIO:	1 OF 1			EMISSION POINT(STACK) ID NO(S): EP-005						
DESCRIBE IN DETAIL THE PR Spodumene concentrate is conv			with a l	bin vent filter. See PD	F attached at the b	eginning of this appendi	x.			
MATERIAL STORED: Spodume	ene Concentrate			DENSITY OF MATER	RIΔI (I B/FT3): 172	,				
CAPACITY	CUBIC FEET: 3200			TONS: 275 tons	MAL (LB/1 13). 172	•				
DIMENSIONS (FEET)	HEIGHT:	DIAMETER:	(OR)	LENGTH: 27	WIDTH: 27	HEIGHT: 76				
ANNUAL PRODUCT THRO		 	61,652	·	ESIGN CAPACITY					
PNEUMATICALLY FI		MECHANICA				FILLED FROM				
BLOWER		SCREW CONVEYOR			RAILCA	.R				
COMPRESSOR	✓	BELT CONVEYOR			☐ TRUCK					
OTHER:		BUCKET ELEVATOR			STORA	GE PILE				
		OTHER:			☑ OTHER	: Upstream Process Un	iits			
NO. FILL TUBES:					•	·				
MAXIMUM ACFM:										
MATERIAL IS UNLOADED TO: BY WHAT METHOD IS MATER		DM SILO? Dropped								
MAXIMUM DESIGN FILLING RA	ATE OF MATERIAL (TONS/HR): 62								
MAXIMUM DESIGN UNLOADIN	IG RATE OF MATER	IAL (TONS/HR): 1,500								
COMMENTS:										

Forms D1, D4, and D5

FORM D1

FACILITY-WIDE EMISSIONS SUMMARY D1 REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL** POTENTIAL EMISSIONS **EMISSIONS** POTENTIAL EMISSIONS (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) AIR POLLUTANT EMITTED tons/yr tons/yr tons/yr PARTICULATE MATTER (PM) 6.11 58.26 8.06 PARTICULATE MATTER < 10 MICRONS (PM₁₀) 3.19 22.84 4.02 PARTICULATE MATTER < 2.5 MICRONS (PM2.5) 1.36 4.33 1.49 SULFUR DIOXIDE (SO2) 0.62 0.62 0.62 NITROGEN OXIDES (NOx) 7.32 7.32 7.32 CARBON MONOXIDE (CO) 11.53 11.53 11.53 VOLATILE ORGANIC COMPOUNDS (VOC) 12.71 20.71 20.71 LEAD GREENHOUSE GASES (GHG) (SHORT TONS) 3,466.76 3,466.76 3,466.76 OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE

		EXPECTED ACTUAL EMISSIONS (AFTER CONTROLS / LIMITATIONS)	POTENTIAL EMISSIONS (BEFORE CONTROLS / LIMITATIONS)	POTENTIAL EMISSIONS (AFTER CONTROLS / LIMITATIONS)
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr
1,3-Butadiene	106990	7.3E-05	7.3E-05	7.3E-05
Acetaldehyde	75070	1.4E-03	1.4E-03	1.4E-03
Acrolein	107028	1.7E-04	1.7E-04	1.7E-04
Benzene	71432	3.1E-07	3.1E-07	3.1E-07
Dichlorobenzene	106467	2.0E-03	2.0E-03	2.0E-03
Formaldehyde	50000	5.1E-07	5.1E-07	5.1E-07
Hexane	110543	1.5E-04	1.5E-04	1.5E-04
Naphthalene	91203	1.2E-02	1.2E-02	1.2E-02
Toluene	108883	2.5E-01	2.5E-01	2.5E-01
Xylenes	1330207	7.9E-05	7.9E-05	7.9E-05

TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE

INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY.

					Modeling	Required ?]
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
1,3-Butadiene	106990	2.93E-04	7.04E-03	1.47E-01		Х	
Acetaldehyde	75070	5.76E-03	0.14	2.88		Х	
Acrolein	107028	6.94E-04	1.67E-02	3.47E-01		Х	
Benzene	71432	7.06E-08	1.69E-06	6.18E-04		Х	
Dichlorobenzene	106467	7.06E-03	0.17	4.04		Х	
Formaldehyde	50000	1.45E-06	3.47E-05	1.01E-03		Х	
Hexane	110543	3.53E-05	8.47E-04	3.09E-01		Х	
Toluene	108883	0.35	8.44	503.20		Х	
Xylenes	1330207	1.79E-05	4.31E-04	1.57E-01		Х	

COMMENTS:

FORM D4

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

REVISED 09/22/16 NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate D4

	(EMPTED DED 00	•
	(EMPTED PER 2Q .	
INSIGNIFICANT ACTIVITIES	S PER 2Q .0503 FO	R TITLE V SOURCES
DESCRIPTION OF EMISSION SOURCE	SIZE OR PRODUCTION RATE	BASIS FOR EXEMPTION OR INSIGNIFICANT ACTIVITY
1. IES-001, IES-002. IES-003, IES-004 Mobile Diesel Tanks	2,500-gal	2Q .0503(8)
2. IES-006 Diesel Storage Tank	25,000-gal	2Q .0503(8)
3. IES-110 Emergency Diesel Generator	536 hp	2Q .0503(8)
4. IES-111 Emergency Diesel Fire Fump Engine	536 hp	2Q .0503(8)
5.IES-112 Reagent Mixing and Storage (except MIBC)		2Q .0503(8)
6.		

Attach Additional Sheets As Necessary

FORM D5

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

NCDEQ/Division of Air Quality - Application for Air Permit to Construct/Operate

REVISED 09/22/16

D5

PROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPPORT ALL EMISSION, CONTROL, AND REGULATORY DEMONSTRATIONS MADE IN THIS APPLICATION. INCLUDE A COMPREHENSIVE PROCESS FLOW DIAGRAM AS NECESSARY TO SUPPORT AND CLARIFY CALCULATIONS AND ASSUMPTIONS. ADDRESS THE FOLLOWING SPECIFIC ISSUES ON SEPARATE PAGES: SPECIFIC EMISSIONS SOURCE (EMISSION INFORMATION) (FORM B and B1 through B9) - SHOW CALCULATIONS USED, INCLUDING EMISSION FACTORS, MATERIAL BALANCES, AND/OR OTHER METHODS FROM WHICH THE POLLUTANT EMISSION RATES IN THIS APPLICATION WERE DERIVED. INCLUDE CALCULATION OF POTENTIAL BEFORE AND, WHERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY ASSUMPTIONS MADE AND PROVIDE ANY REFERENCES AS NEEDED TO SUPPORT MATERIAL BALANCE CALCULATIONS. SPECIFIC EMISSION SOURCE (REGULATORY INFORMATION)(FORM E2 - TITLE V ONLY) - PROVIDE AN ANALYSIS OF ANY REGULATIONS APPLICABLE TO INDIVIDUAL SOURCES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING REQUIREMENTS) FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON PROCESS RATES OR OTHER OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION OF SIGNIFICANT DETERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERAL REGULATIONS WHICH WOULD OTHERWISE BE APPLICABLE TO THIS FACILITY. SUBMIT ANY REQUIRED INFORMATION TO DOCUMENT COMPLIANCE WITH ANY REGULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM "A" ABOVE, DATES OF MANUFACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CALCULATIONS. CONTROL DEVICE ANALYSIS (FORM C and C1 through C9) - PROVIDE A TECHNICAL EVALUATION WITH SUPPORTING REFERENCES FOR ANY CONTROL EFFICIENCIES LISTED ON SECTION C FORMS. OR USED TO REDUCE EMISSION RATES IN CALCULATIONS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATING PARAMETERS (e.g. OPERATING CONDITIONS, MANUFACTURING RECOMMENDATIONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICATION) CRITICAL TO ENSURING PROPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE PARTICULAR CONTROL DEVICES AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR ASSURING PROPER OPERATION OF THE CONTROL DEVICE INCLUDING MONITORING SYSTEMS AND MAINTENANCE TO BE PERFORMED. PROCESS AND OPERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONLY) - SHOWING HOW COMPLIANCE WILL BE ACHIEVED WHEN USING PROCESS, OPERATIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. REFER TO COMPLIANCE REQUIREMENTS IN THE REGULATORY ANALYSIS IN ITEM "B" WHERE APPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT CAN BE MONITORED AND REPORTED TO DEMONSTRATE COMPLIANCE WITH THE APPLICABLE REGULATIONS. PROFESSIONAL ENGINEERING SEAL -PURSUANT TO 15A NCAC 2Q .0112 "APPLICATION REQUIRING A PROFESSIONAL ENGINEERING SEAL." A PROFESSIONAL ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQUIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATION FOR NEW SOURCES AND MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIONS FOR FURTHER APPLICABILITY). I, William F. Karl Albemarle Kings Mountain Facility attest that this application for has been reviewed by me and is accurate, complete and consistent with the information supplied in the engineering plans, calculations, and all other supporting documentation to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. Note: In accordance with NC General Statutes 143-215.6A and 143-215.6B, any person who knowingly makes any false statement, representation, or certification in any application shall be quilty of a Class 2 misdemeanor which may include a fine not to exceed \$10,000 as well as civil penalties up to \$25,000 per violation. PLACE NORTH CAROLINA SEAL HERE (PLEASE USE BLUE INK TO COMPLETE THE FOLLOWING) NAME: William F. Karl DATE: COMPANY: SWCA Environmental Consultants 113 Edinburgh S Dr #120, Cary, NC 27511 ADDRESS: TELEPHONE: (352) 214-5733 SIGNATURE: PAGES CERTIFIED: Emission Calculations NC DAQ Forms B, B1, B6, B9, and C (IDENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT THAT IS BEING CERTIFIED BY THIS SEAL)

531

532 APPENDIX B EMISSION CALCULATIONS

533534

Doc No.: KM60-EN-RP-9091 Revision: 1

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Emissions Summary

Table 1.a. Summary of Uncontrolled PTE in Pounds Per Hour

Emissions Source	Uncontrolled PTE Emissions, lb/hr									
Emissions source	СО	NO _x	SO _x	PM	PM ₁₀	PM _{2.5}	voc	CO ₂ e	HAPs	
Primary Ore Crushing	-	-	-	1.27	0.56	0.08	-	-	-	
Secondary Ore Crushing	-	-	-	2.64	1.01	0.15	-	-	-	
Ore Sorting	-	-	-	2.85	1.12	0.17	-	-	-	
Tertiary Ore Crushing	-	-	-	4.07	1.30	0.20	-	-	-	
Concentrator and Tailings	-	-	-	2.23	1.00	0.15	-	-	-	
Bag Filters	-	-	-	N/A	N/A	N/A	-	-	-	
Reagent Usage	-	-	-	-	-	-	4.57	-	-	
Emergency Generator Engine	1.42	5.44	1.09	0.12	0.12	0.12	0.01	617.43	1.39E-02	
Emergency Fire Pump Engine	1.42	5.44	1.09	0.12	0.12	0.12	0.01	617.43	1.39E-02	
Dryer	2.47	1.05	0.02	0.22	0.22	0.22	0.16	721.02	5.55E-02	
Total	5.31	11.92	2.19	13.52	5.44	1.21	4.75	1,955.87	0.08	

Table 1.b. Summary of Uncontrolled PTE in Tons Per Year

Emissions Source			Ur	controlled	l Emissions	, tons/yea	ır		
Emissions source	со	NO _x	SO _x	PM	PM ₁₀	PM _{2.5}	voc	CO₂e	HAPs
Primary Ore Crushing	-	-	-	5.58	2.45	0.37	-	-	-
Secondary Ore Crushing	-	-	-	11.58	4.42	0.66	-	-	-
Ore Sorting	-	-	-	12.47	4.89	0.74	-	-	-
Tertiary Ore Crushing	-	-	-	17.83	5.67	0.86	-	-	-
Concentrator and Tailings	-	-	-	9.77	4.37	0.66	-	-	-
Bag Filters	-	-	-	N/A	N/A	N/A	-	-	-
Reagent Usage	-	-	-	-	-	-	20.00	-	-
Emergency Generator Engine	0.35	1.36	0.27	0.03	0.03	0.03	2.95E-03	154.36	3.48E-03
Emergency Firewater Pump Engine	0.35	1.36	0.27	0.03	0.03	0.03	2.95E-03	154.36	3.48E-03
Dryer	10.82	4.60	0.08	0.98	0.98	0.98	0.71	3,158.05	2.42E-01
Total	11.53	7.32	0.62	58.26	22.84	4.33	20.71	3,466.76	0.25

Table 1.c. Summary of Potential Controlled Emissions in Pounds Per Hour

Funicaiona Course	Controlled Emissions, lb/hr									
Emissions Source	СО	NO _x	SO _x	PM	PM ₁₀	PM _{2.5}	voc	CO ₂ e	HAPs	
Primary Ore Crushing	-	-	-	0.72	0.34	0.05	-	-	-	
Secondary Ore Crushing	-	-	-	0.13	0.05	0.01	-	-	-	
Ore Sorting	-	-	-	0.14	0.06	0.01	-	-	-	
Tertiary Ore Crushing	-	-	-	0.20	0.06	0.01	-	-	-	
Concentrator and Tailings	-	-	-	0.29	0.13	0.02	-	-	-	
Bag Filters	-	-	-	0.12	0.04	0.01	-	-	-	
Reagent Usage	-	-	-	-	-	-	4.57	-	-	
Emergency Generator Engine	1.42	5.44	1.09	0.12	0.12	0.12	0.01	617.43	1.39E-02	
Emergency Firewater Pump Engine	1.42	5.44	1.09	0.12	0.12	0.12	0.01	617.43	1.39E-02	
Dryer	2.47	1.05	0.02	0.22	0.22	0.22	0.16	721.02	5.55E-02	
Total	5.31	11.92	2.19	2.06	1.14	0.56	4.75	1,955.87	0.08	

Table 1.d. Summary of Potential Controlled Emissions in Tons Per Year

5			C	ontrolled	Emissions,	tons/year			
Emissions Source	СО	NO _x	SO _x	PM	PM ₁₀	PM _{2.5}	voc	CO ₂ e	HAPs
Primary Ore Crushing	-	-	-	3.15	1.48	0.22	-	-	-
Secondary Ore Crushing	-	-	-	0.58	0.22	0.03	-	-	-
Ore Sorting	-	-	-	0.62	0.24	0.04	-	-	-
Tertiary Ore Crushing	-	-	-	0.89	0.28	0.04	-	-	-
Concentrator and Tailings	-	-	-	1.27	0.57	0.09	-	-	-
Bag Filters				0.51	0.19	0.03			
Reagent Usage	-	-	-	-	-	-	20.00	-	-
Emergency Generator Engine	0.35	1.36	0.27	0.03	0.03	0.03	2.95E-03	154.36	3.48E-03
Emergency Firewater Pump Engine	0.35	1.36	0.27	0.03	0.03	0.03	2.95E-03	154.36	3.48E-03
Dryer	10.82	4.60	0.08	0.98	0.98	0.98	0.71	3,158.05	2.42E-01
Total	11.53	7.32	0.62	8.06	4.02	1.49	20.71	3,466.76	0.25

Table 1.e. Summary of Actual Controlled Emissions in Pounds Per Hour

F	Controlled Emissions, lb/hr									
Emissions Source	СО	NO _x	SO _x	PM	PM ₁₀	PM _{2.5}	voc	CO ₂ e	HAPs	
Primary Ore Crushing	-	-	-	0.72	0.34	0.05	-	-	-	
Secondary Ore Crushing	-	-	-	0.13	0.05	0.01	-	-	-	
Ore Sorting	-	-	-	0.14	0.06	0.01	-	-	-	
Tertiary Ore Crushing	-	-	-	0.20	0.06	0.01	-	-	-	
Concentrator and Tailings	-	-	-	0.29	0.13	0.02	-	-	-	
Bag Filters	-	-	-	0.12	0.04	0.01	-	-	-	
Reagent Usage	-	-	-	-	-	-	2.74	-	-	
Emergency Generator Engine	1.42	5.44	1.09	0.12	0.12	0.12	0.01	617.43	1.39E-02	
Emergency Fire Pump Engine	1.42	5.44	1.09	0.12	0.12	0.12	0.01	617.43	1.39E-02	
Dryer	2.47	1.05	0.02	0.22	0.22	0.22	0.16	721.02	5.55E-02	
Total	5.31	11.92	2.19	2.06	1.14	0.56	2.93	1,955.87	0.08	

Table 1.f. Summary of Actual Controlled Emissions in Tons Per Year

F''		Controlled Emissions, tons/year									
Emissions Source	со	NO _x	SO _x	PM	PM ₁₀	PM _{2.5}	voc	CO ₂ e	HAPs		
Primary Ore Crushing	-	-	-	2.10	0.99	0.15	-	-	-		
Secondary Ore Crushing	-	-	-	0.39	0.15	0.02	-	-	-		
Ore Sorting	-	-	-	0.42	0.16	0.02	-	-	-		
Tertiary Ore Crushing	-	-	-	0.60	0.19	0.03	-	-	-		
Concentrator and Tailings	-	-	-	1.07	0.48	0.07	-	-	-		
Bag Filters				0.51	0.19	0.03					
Reagent Usage	-	-	-	-	-	-	12.00	-	-		
Emergency Generator Engine	0.35	1.36	0.27	0.03	0.03	0.03	2.95E-03	154.36	3.48E-03		
Emergency Fire Pump Engine	0.35	1.36	0.27	0.03	0.03	0.03	2.95E-03	154.36	3.48E-03		
Dryer	10.82	4.60	0.08	0.98	0.98	0.98	0.71	3,158.05	2.42E-01		
Total	11.53	7.32	0.62	6.11	3.19	1.36	12.71	3,466.76	0.25		

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC HAP Emissions Summary

Table 1.g. Summary of HAP Emissions

Pollutant		yer 039)	• .	Generator 110)		e Pump Engine 111)		rage Tanks 003,004,006))	Total	HAPs
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
1,3-Butadiene			1.47E-04	3.67E-05	1.47E-04	3.67E-05			2.93E-04	7.34E-05
Acetaldehyde			2.88E-03	7.19E-04	2.88E-03	7.19E-04			5.76E-03	1.44E-03
Acrolein			3.47E-04	8.68E-05	3.47E-04	8.68E-05			6.94E-04	1.74E-04
Anthracene	7.06E-08	3.09E-07							7.06E-08	3.09E-07
Benzene	6.18E-05	2.71E-04	3.50E-03	8.75E-04	3.50E-03	8.75E-04			7.06E-03	2.02E-03
Benzo(a)pyrene	3.53E-08	1.55E-07	7.05E-07	1.76E-07	7.05E-07	1.76E-07			1.45E-06	5.07E-07
Dichlorobenzene	3.53E-05	1.55E-04							3.53E-05	1.55E-04
Formaldehyde	2.21E-03	9.66E-03	4.43E-03	1.11E-03	4.43E-03	1.11E-03			1.11E-02	1.19E-02
Hexane	5.29E-02	2.32E-01					2.99E-01	1.97E-02	3.52E-01	2.52E-01
Naphthalene	1.79E-05	7.86E-05							1.79E-05	7.86E-05
Toluene	1.00E-04	4.38E-04	1.53E-03	3.84E-04	1.53E-03	3.84E-04			3.17E-03	1.21E-03
Xylenes		•	1.07E-03	2.67E-04	1.07E-03	2.67E-04			2.14E-03	5.35E-04
Maximum Single HAP (Hexane)	0.05	0.23					0.30	0.02	0.35	0.25
Total HAPs	0.06	0.24	0.01	0.00	0.01	0.00	0.30	0.02	0.38	0.27

Note: All VOC from diesel tanks is conservatively assumed to be hexane since that is the maximum HAP emitted from the other processes.

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Primary Crushing

Table 2.a. Uncontrolled Ore Crushing and Processing Emissions

Tubic Elu: Officontioned off Ci																																				
·															PM									PM ₁₀								PM _{2.5}				
Emission Source	Emission	Method of Control	Emission	Emission Category 1, 2	Hourly		Projected Operating	PTE Throughout			Emission				dPIE	Uncontrol		Contro			Uncontroll			dPIE	Uncontr		Contro			Uncontrolled				ctod	Conti	
	Source		Point	Elilission category		Hours	Hours		0	Efficiency	Factor	Emission	ns **	Emission	15 ^{3, 4}	Emissions	3.4	Emissio	ons "."	Factor	Emission	15 3, 4	Emission	IS 3, 4	Emissio	ns 3, 4	Emissio	ons **	Factor	Emissions ²	En	nissions 3, 4	Emissi	ons 3, 4	Emissi	ons 3, 4
					tons/hr			tons/year	tons/year		lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/ton	lb/hr t	py lb/	hr tpy	lb/hr	tpy	lb/hr	tpy
ROM Truck Unloading Area	ES-029	N/A	EP-029	Drop Operations	556	8,760	5,843	4,870,560	3,248,664		1.24E-03	0.69	3.02	0.69	3.02	0.69	2.01	0.69	2.01	5.86E-04	0.33	1.43	0.33	1.43	0.33	0.95	0.33	0.95	8.87E-05	4.93E-02 2.1	5E-01 4.93	E-02 2.16E-01	4.93E-02	1.44E-01	4.93E-02	1.44E-01
Apron Feeder Conveyor	ES-028a	CD-028 Primary Crusher Baghouse	EP-028	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23 3	3.89E-03	0.01	4.60E-05	0.03	0.11 1.	28E-03	0.01	0.03	0.07	1.28E-03	3.74E-03	6.90E-06	3.84E-03 0	.02 1.92	E-04 8.40E-04	3.84E-03	0.01	1.92E-04	5.60E-04
Vibrating Grizzly	ES-028b	CD-028 Primary Crusher Baghouse	EP-028	Screening	556	8,760		4,870,560			1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23 3	8.89E-03	0.01	4.60E-05	0.03	0.11 1.	28E-03	0.01	0.03	0.07	1.28E-03	3.74E-03	6.90E-06	3.84E-03 0	.02 1.92	E-04 8.40E-04	3.84E-03	0.01	1.92E-04	5.60E-04
Primary Jaw Crusher	ES-028c	CD-028 Primary Crusher Baghouse	EP-028	Crushing	292	8,760	5,843	2,557,920	1,706,133	95%	1.20E-03	0.35	1.53	0.02	0.08	0.35	1.02	0.02	0.05	5.40E-04	0.16	0.69	0.01	0.03	0.16	0.46	0.01	0.02	8.10E-05	0.02 0	.10 1.18	E-03 0.01	0.02	0.07	1.18E-03	3.45E-03
Sacrificial Conveyor	ES-028d	CD-028 Primary Crusher Baghouse	EP-028	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23 3	8.89E-03	0.01	4.60E-05	0.03	0.11 1.	28E-03	0.01	0.03	0.07	1.28E-03	3.74E-03	6.90E-06	3.84E-03 0	.02 1.92	E-04 8.40E-04	0.00	0.01	1.92E-04	5.60E-04
Total												1.27	5.58	0.72	3.15	1.27	3.72	0.72	2.10		0.56	2.45	0.34	1.48	0.56	1.64	0.34	0.99		0.08 0	.37 0.0	05 0.22	0.08	0.25	0.05	0.15

Outsling, screening, and conveyor transfer points emissions are taken from AP-42, Table 11.19-2.2 Wherever PMs, emission factors can are not available, they are assumed to be 15% of PMs, emission factors. The ore material naturally contains 5% by weight moisture. Based on AP-42 Chapter 11.9-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions. Included using equation of AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions for factor for does operations. Calculated using equation of AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions. (b) weight moisture. Based on AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions. (b) weight moisture. Based on AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions. (b) weight moisture. Based on AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions. (b) weight moisture. Based on AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained with Table 11.19-2-2 have been used to estimate PTE emissions. (b) weight moisture. Based on AP-42 Chapter 11.19-1 "high" moisture material is considered >15%. Therefore, the controlled emission factors contained and the property of the controlled emission factors contained and the property of the controlled emission factors contained and the prop

The Coarse High Intensity Magnetic Separator #1/#2 consist of three internal permrolls (or conveyors with magnetic head pulleys) and have been characterized as a drop and series of three conveyors.

E Where:	$\left(\frac{lb}{ton}\right) =$	k (0.00	32)×	$\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$	

E = emission factor (lb/ton)
k = particle size multiplier (dimensionless)
II = mean wind speed (mph) *

PM E	mission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor
1.24E-03 lb/to	in	5.86E-04 lb/ton	8.87E-05 lb/ton
0.74		0.35	0.053
8.15 mph		8.15 mph	8.15 mph
5.0 %		5.0 %	5.0 %
the range of source conditions for Equation 1. (EPA	AP-42 November 2006, Chapte	rr 13.2.4)	

5% Moisture Content:

¹ The sorters do vibrate but use x-ray sensors to sort the material. Sorter emissions have been characterized as a Drop and series of three conveyors (Belt Conveyor, Vibrating Belt Feeder, and Conveyor Belt).

M = material moisture content (%)

* Note that the mean wind speed (U) was assumed to be the average of t

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Secondary Crushing

_															PM								P	M ₁₀								F	PM _{2.5}			
Emission Source	Emission Source	Method of Control	Emission Point	Emission Category 1,2	Hourly Capacity	PTE Operating Hours	Projected Operating Hours		Projected Throughput		Emission Factor	Uncont	rolled PTE ions ^{2,4}	Controll Emissio		Uncont Proje Emissio	ted	Contro		Emission Factor	Uncontrolli		Controlled Emission:	PIE	Project Emissio	ted	Cont		Emission Factor	Uncontro		Controll Emissio		Uncontrol Projecte Emissions	, ,	ontrolled nissions ^{2, 4}
					tons/hr			tons/year	tons/year		lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	py lb/i	nr tpy
Scalping Screen Feed Conveyor #1	ES-027	CD-023 Secondary Crusher Baghouse	EP-023	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23	3.89E-03	0.01	4.60E-05	0.03	0.11 1	1.28E-03	0.01	0.03	0.07 1	.28E-03	3.74E-03	6.90E-06	3.84E-03	0.02	1.92E-04	8.40E-04	3.84E-03 (.01 1.92E	-04 5.60E-04
Scalping Screen Feed Conveyor #2	ES-026	CD-023 Secondary Crusher Baghouse	EP-023	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23	3.89E-03	0.01	4.60E-05	0.03	0.11 1	1.28E-03	0.01	0.03	0.07 1	.28E-03	3.74E-03	6.90E-06	3.84E-03	0.02	1.92E-04	8.40E-04	3.84E-03 (.01 1.92E	-04 5.60E-04
Scalping Screen Feed Conveyor #3	ES-023a	CD-023 Secondary Crusher Baghouse	EP-023	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23	3.89E-03	0.01	4.60E-05	0.03	0.11 1	1.28E-03	0.01	0.03	0.07 1	.28E-03	3.74E-03	6.90E-06	3.84E-03	0.02	1.92E-04	8.40E-04	3.84E-03 (.01 1.92E	-04 5.60E-04
Scalping Screen	ES-023b	CD-023 Secondary Crusher Baghouse	EP-023	Screening	556	8,760	5,843	4,870,560	3,248,664	95%	2.20E-03	1.22	5.36	0.06	0.27	1.22	3.57	0.06	0.18	7.40E-04	0.41	1.80	0.02	0.09	0.41	1.20	0.02	0.06	1.11E-04	0.06	0.27	3.09E-03	0.01	0.06	.18 3.09E	-03 0.01
Secondary Crusher Feed Bin	ES-023c	CD-023 Secondary Crusher Baghouse	EP-023	Drop Operations	400	8,760	5,843	3,504,000	2,337,168	95%	1.24E-03	0.50	2.17	0.02	0.11	0.50	1.45	0.02	0.07	5.86E-04	0.23	1.03	0.01	0.05	0.23	0.68	0.01	0.03	8.87E-05	0.04	0.16	1.77E-03	0.01	0.04 (.10 1.77E	-03 0.01
Secondary Crusher Belt Feeder	ES-023d	CD-023 Secondary Crusher Baghouse	EP-023	Conveyor Transfer Point	400	8,760	5,843	3,504,000		95%	1.40E-04	0.06	0.25	2.80E-03	0.01	0.06	0.16	2.80E-03	0.01	4.60E-05	0.02	0.08	9.20E-04 4.	03E-03	0.02	0.05 9	.20E-04	2.69E-03	6.90E-06	2.76E-03	0.01	1.38E-04	6.04E-04	2.76E-03 (.01 1.38E	-04 4.03E-04
Secondary Cone Crusher	ES-023e	CD-023 Secondary Crusher Baghouse	EP-023	Crushing	400	8,760	5,843	3,504,000	2,337,168	95%	1.20E-03	0.48	2.10	0.02	0.11	0.48	1.40	0.02	0.07	5.40E-04	0.22	0.95	0.01	0.05	0.22	0.63	0.01	0.03	8.10E-05	0.03	0.14	1.62E-03	0.01	0.03	.09 1.62E	-03 4.73E-03
Sorting Screen Feed Conveyor #1	ES-023f	CD-023 Secondary Crusher Baghouse	EP-023	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23	3.89E-03	0.01	4.60E-05	0.03	0.11 1	1.28E-03	0.01	0.03	0.07 1	.28E-03	3.74E-03	6.90E-06	3.84E-03	0.02	1.92E-04	8.40E-04	3.84E-03 (.01 1.92E	-04 5.60E-04
Sorting Screen Feed Conveyor #2	ES-023g	CD-023 Secondary Crusher Baghouse	EP-023	Conveyor Transfer Point	556	8,760	5,843	4,870,560	3,248,664	95%	1.40E-04	0.08	0.34	3.89E-03	0.02	0.08	0.23	3.89E-03	0.01	4.60E-05	0.03	0.11 1	1.28E-03	0.01	0.03	0.07 1	.28E-03	3.74E-03	6.90E-06	3.84E-03	0.02	1.92E-04	8.40E-04	3.84E-03 (.01 1.92E	-04 5.60E-04
Total												2.64	11.58	0.13	0.58	2.64	7.72	0.13	0.39		1.01	4.42	0.05	0.22	1.01	2.95	0.05	0.15		0.15	0.66	0.01	0.03	0.15	.44 0.0	1 0.02

Touching, covering, and conveying and conveying residence principle emissions, and interest how a Real, Table 1.11.9.2. Where we assumed to be 13% of PML, emission factors. The ent material naturally contains 5% by weight mointure. Based on AP-22 Chapter 11.19-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors contained with Table 1.11.9.2 have been used to estimate PTE emissions.

**Institution (Shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors the same part of the controlled emission factors are not available, they are assumed to be 13% of PML, emission factors (Shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore, the controlled emission factors (shirt) = AP-22 Chapter 1.11.9-1 "high" mointure material is considered >1.5%. Therefore the controlled is considered >1.5%. Therefore the controlled is considered >1.5%. Therefore the controlled >1.5%. Therefore the controlled >1.5%. Therefore the controlled >1.5%. Therefore the controlled >1.5%. Therefore the controlled >1.5%. Therefore the controlled >1.5%. Therefore the controlled >

PM Emission Factor

5% Moisture Content:

PM₁₀ Emission Factor

5.86E-04 lb/ton

0.35 8.15 mph 5.0 %

PM_{2.5} Emission Factor 8.87E-05 lb/ton

0.053 8.15 mph 5.0 %

$E\left(\frac{lb}{ton}\right) = k(0.0032) \times \frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$ nere:	
---	--

E = emission factor (lb/ton) k = particle size multiplier (dimensionless)

J = mean wind speed (mph) *	
M = material moisture content (%)	

= emission factor (pitron)

1.48-95 (n)ron

2.4

4.5 particles (item Unifier (dimensionless)

0.74

1.5 main (speed (mph))*

8.55 mph

8.55 mph

8.50 N

* Note that the mean wind speed (II) was assumed to be the average of the range of source conditions for Equation 1. (EPA AP-42 November 2005, Chapit

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Sorting

Table 4.c. Uncontrolled Ore Crushing and Proce	ssing Emissions																																	
															PM								PM ₁₀								PM _{2.5}			
Emission Source	Emission Source	Method of Control	Emission Point	Emission Category 1, 2	Hourly Capacity	PTE Operating Hours	Projected Operating Hours	PTE Throughput	Projected Throughput	Capture Efficiency	Emission Factor	Uncontro		Controll Emission		Unconti Projec Emissio	crolled cted ons 2,4	Controlled Emissions ^{3, 4}	Emission Factor	Uncontr		Control	led PTE ons ^{8, 4}	Uncontr Projec Emissip		Controlled Emissions ^{1, 4}	Emissio Factor		trolled PTE	Contro	iled PTE sions ^{2, 4}	Uncontrolled Projected Emissions 3,4	Contro	
					tons/hr			tons/year	tons/year		lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr tpy	lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr tpy	lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr tpy	/ Ib/hr	tpy
Sorting Sizing Screen	ES-020a	CD-020 Sorter Sizing Screen Baghouse		Screening	556	8,760	5,843	4,870,560	3,248,664	95%	2.20E-03	1.22	5.36	0.06	0.27	1.22	3.57	0.06 0.18		0.41	1.80	0.02	0.09	0.41	1.20	0.02 0.06		4 0.06	0.27	0.00	0.01	0.06 0.1	8 0.00	
Coarse Sorting Conveyor	ES-020b	CD-020 Sorter Sizing Screen Baghouse		Conveyor Transfer Point	338	8,760	5,843	2,960,880	1,974,907	95%	1.40E-04	0.05	0.21	0.00	0.01	0.05	0.14	2.37E-03 0.01	4.60E-05	0.02	0.07		3.41E-03	0.02	0.05	7.77E-04 2.27E-0	3 6.90E-0			1.17E-04	5.11E-04	.33E-03 0.0		3.41E-04
Fine Sorting Conveyor	ES-020c	CD-020 Sorter Sizing Screen Baghouse		Conveyor Transfer Point	144	8,760	5,843	1,261,440	841,380	95%	1.40E-04	0.02		1.01E-03		0.02		1.01E-03 2.94E-		0.01	0.03	3.31E-04				3.31E-04 9.68E-4								
Sorting Bypass Conveyor #1	ES-017a	CD-018 Sorter Bypass Conveyor Baghouse		Conveyor Transfer Point	72	8,760	5,843	630,720	420,690	95%	1.40E-04		0.04	5.04E-04		0.01		5.04E-04 1.47E-						3.31E-03		1.66E-04 0.00								
Sorting Bypass Conveyor #2	ES-017b	CD-018 Sorter Bypass Conveyor Baghouse		Conveyor Transfer Point	72	8,760	5,843	630,720	420,690	95%	1.40E-04	0.01	0.04	5.04E-04	2.21E-03	0.01	0.03	5.04E-04 1.47E-		3.31E-03	0.01	1.66E-04	7.25E-04		0.01	1.66E-04 4.84E-4							-03 2.48E-05	
Coarse Sorter Bin	ES-018a	CD-018 Sorter Bypass Conveyor Baghouse		Drop Operations	338	8,760	5,843	2,960,880	1,974,907	95%	1.24E-03	0.42	1.83	0.02	0.09	0.42	1.22	0.02 0.06			0.87	0.01	0.04	0.20	0.58	0.01 0.03			0.13	1.50E-03	0.01	0.03 0.0		
Belt Feeder - Coarse Sorter #1/#2	ES-018b	CD-018 Sorter Bypass Conveyor Baghouse	EP-018	Conveyor Transfer Point	338	8,760	5,843	2,960,880	1,974,907	95%	1.40E-04	0.05	0.21	2.37E-03	0.01	0.05	0.14	2.37E-03 0.01	4.60E-05	0.02	0.07	7.77E-04	3.41E-03	0.02	0.05	7.77E-04 2.27E-0	3 6.90E-0	5 2.33E-0	3 0.01	1.17E-04	5.11E-04	.33E-03 0.0	1.17E-04	3.41E-04
Fine Sorter Bin	ES-018c	CD-018 Sorter Bypass Conveyor Baghouse	EP-018	Drop Operations	144	8,760	5,843	1,261,440	841,380	95%	1.24E-03	0.18	0.78	0.01	0.04	0.18	0.52	0.01 0.03			0.37	4.22E-03	0.02	0.08	0.25	4.22E-03 0.01	8.87E-0	5 0.01	0.06	6.39E-04	2.80E-03	0.01 0.0	4 6.39E-04	1.87E-03
Belt Feeder - Fine Sorter #1/#2	ES-018d	CD-018 Sorter Bypass Conveyor Baghouse	EP-018	Conveyor Transfer Point	144	8,760	5,843	1,261,440	841,380	95%	1.40E-04	0.02	0.09	1.01E-03	4.42E-03	0.02	0.06	1.01E-03 2.94E-	03 4.60E-05	0.01	0.03	3.31E-04	1.45E-03	0.01	0.02	3.31E-04 9.68E-4	4 6.90E-0	9.94E-0	4 4.35E-03	4.97E-05	2.18E-04	.94E-04 2.90E	-03 4.97E-05	1.45E-04
	ES-016a	CD-016 Ore Sorting Baghouse	EP-016	Drop Operations	338	8,760	5,843	2,960,880	1,974,907	95%	1.24E-03	0.42	1.83	0.02	0.09	0.42	1.22	0.02 0.06	5.86E-04	0.20	0.87	0.01	0.04	0.20	0.58	0.01 0.03	8.87E-0	5 0.03	0.13	1.50E-03	0.01	0.03 0.0	9 1.50E-03	4.38E-03
Coarse Sorter #1/#2 6	ES-016a	CD-016 Ore Sorting Baghouse		Conveyor Transfer Point	338	8,760	5,843	2,960,880	1,974,907	95%	1.40E-04	0.05	0.21	2.37E-03	0.01	0.05	0.14	2.37E-03 0.01	4.60E-05	0.02	0.07	7.77E-04	3.41E-03	0.02	0.05	7.77E-04 2.27E-0	3 6.90E-0	5 2.33E-0	3 0.01	1.17E-04	5.11E-04	.33E-03 0.0	1.17E-04	
Coarse Sorter #1/#2 6	ES-016a	CD-016 Ore Sorting Baghouse	EP-016	Conveyor Transfer Point	338	8,760	5,843	2,960,880	1,974,907	95%	1.40E-04	0.05	0.21	2.37E-03	0.01	0.05	0.14	2.37E-03 0.01	4.60E-05	0.02	0.07	7.77E-04	3.41E-03	0.02	0.05	7.77E-04 2.27E-0	3 6.90E-0	5 2.33E-0	3 0.01	1.17E-04	5.11E-04	.33E-03 0.0	1.17E-04	3.41E-04
	ES-016a	CD-016 Ore Sorting Baghouse	EP-016	Conveyor Transfer Point	338	8.760	5.843	2.960.880	1.974.907	95%	1.40E-04	0.05	0.21	2.37E-03	0.01	0.05	0.14	2.37E-03 0.01	4.60E-05	0.02	0.07	7.77E-04	3.41E-03	0.02	0.05	7.77E-04 2.27E-I	3 6.90E-0	5 2.33E-0	3 0.01	1.17E-04	5.11E-04	.33E-03 0.0	1.17E-04	3.41E-04
	ES-016b	CD-016 Ore Sorting Baghouse	EP-016	Drop Operations	144	8.760	5.843	1.261.440	841.380	95%	1.24E-03	0.18	0.78	0.01	0.04	0.18	0.52	0.01 0.03			0.37	4.22E-03	0.02	0.08	0.25	4.22E-03 0.01	8.87E-0	5 0.01	0.06	6.39E-04	2.80E-03	0.01 0.0	4 6.39E-04	1.87E-03
	ES-016b	CD-016 Ore Sorting Baghouse	EP-016	Conveyor Transfer Point	144	8.760	5.843	1.261.440	841.380	95%	1.40E-04	0.02	0.09	1.01E-03	4.42E-03	0.02	0.06	1.01E-03 2.94E-	03 4.60E-05	0.01	0.03	3.31E-04	1.45E-03	0.01	0.02	3.31E-04 9.68E-	4 6.90E-0	5 9.94E-0	4 4.35E-03	4.97E-05	2.18E-04	.94E-04 2.90E	-03 4.97E-05	1.45E-04
Fine Sorter #1/#2 5	ES-016b	CD-016 Ore Sorting Baghouse	EP-016	Conveyor Transfer Point	144	8.760	5.843	1.261.440	841.380	95%	1.40E-04	0.02	0.09	1.01E-03	4.42E-03	0.02	0.06	1.01E-03 2.94E-	03 4.60E-05	0.01	0.03	3.31E-04	1.45E-03	0.01	0.02	3.31E+04 9.68E+	4 6.90E-0	5 9.94E-0	4 4.35E-03	4.97E-05	2.18E-04	.94E-04 2.90E	-03 4.97E-05	1.45E-04
	ES-016b	CD-016 Ore Sorting Baghouse	EP-016	Conveyor Transfer Point	144	8.760	5.843	1.261.440	841.380	95%	1.40E-04	0.02	0.09	1.01E-03	4.42E-03	0.02	0.06	1.01E-03 2.94E-	03 4.60E-05	0.01	0.03	3.31E-04	1.45E-03			3.31E-04 9.68E-								
Sorter Rejects Conveyor	ES-030	CD-016 Ore Sorting Baghouse		Conveyor Transfer Point	98	8.760	7.446	858,480	729,708	95%	1.40F-04	0.01	0.06	6.86E-04	3.00E-03	0.01	0.05	6.86E-04 2.55E-	03 4.60E-05	4.51E-03			9.87E-04		0.02	2.25E-04 8.39E-			4 2.96E-03			76F-04 2 52F	.03 3 38E-05	1.26E-04
Tertiary Crushing Feed Conveyor	ES-019	CD-016 Ore Sorting Baghouse		Conveyor Transfer Point	413	8.760	5.843	3.617.880	2.413.126	95%	1.40F-04	0.06	0.25	2.89E.03	0.01	0.06	0.17	2.89E ₁ 03 0.01		0.02	0.08		4.16E-03			9.50E-04 2.78E-					6.24E-04	85E-03 0.0	1 1.42E-04	4 16E-04
Total	20.000					40.44		3,021,7000	-,,				12.47	0.14			8.33	0.14 0.42			4.89	0.06	0.24	1.12	3.27	0.06 0.16		0.17		0.01	0.04	0.17 0.4		

^{**}Coming, sometime, and conveyor to confirm generation as to taken from AP-4, Tabb 1133-22. Wherever PM_{1, s} emission finding as not an addide, they are assemble to bit 10 of PM_{2, semission findings. The or makes of substitution for the comparation of the confidence of the confid}

$E\left(\frac{B}{3}\right) = k\left(0.0032\right) \times \frac{\left(\frac{B}{3}\right)^{1/3}}{\left(\frac{B}{2}\right)^{1/3}}$ Where:
E = emission factor (lb/ton)

	PM Emission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor
1.245-03	lb/ton	5.86E-04 lb/ton	8.87E-05 lb/ton
0.74		0.35	0.053
8.15	mph	8.15 mph	8.15 mph
5.0	%	5.0 %	5.0 %

E - maiori factor (Physi)

4. particle ion multiple informations)

U - mean word queed (right)*

When maked institutes control (S)

* Anisot fact that the mean said speed (S) was assumed to be the average of the range of source conditions for Equation 1. (EPA AF-42 November 2006, Chapter 2.1.2.4)

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Tertiary Crushing

															PM								PM ₁₀								PM ₂	.5			
Emission Source	Emission Source	Method of Control	Emission Point	Emission Category 1,2	Hourly Capacity	PTE Operating Hours	Projected Operating Hours	PTE Throughput	Projected Throughput	Capture Efficiency	Emission Factor	Uncontr	olled PTE ions ^{2, 4}	Control	led PTE ons ^{2,4}	Uncontrolle Projected Emis 3,4		olled Emission 2,4	Emission Factor	Uncont	rolled PTE sions ^{2, 4}	Contro	lled PTE ons ^{3,4}	Uncon Projected	trolled Emissions	Controlled	d Emissions	Emission Factor	Uncontrol Emissio	led PTE ns ^{2,4}	Controlled I Emissions	PIE	Uncontrolled rojected Emission 3,4		
					tons/hr			tons/year	tons/year		lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr t	y Ib/I	r tpy	lb/ton	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/ton	lb/hr	tpy	lb/hr	tpy /	lb/hr tpy	lb/hr	tpy
Tertiary Crusher Sizing Screens	ES-022a&b	CD-022 Tertiary Sizing Screen Baghouse	EP-022	Screening	1,284	8,760	5,843	11,247,840	7,502,309	95%	2.20E-03	2.82	12.37	0.14	0.62	2.82 8.	25 0.1	0.41	5.86E-04	0.75	3.30	0.04	0.16	0.75	2.20	0.04	0.11	8.87E-05	0.11	0.50	0.01	0.02	0.11 0.33	0.01	0.02
Tertiary Crushing Feed Bin Conveyor	ES-022c	CD-022 Tertiary Sizing Screen Baghouse	EP-022	Conveyor Transfer Point	413	8,760	5,843	3,617,880	2,413,126	95%	1.40E-04	0.06	0.25	0.00	0.01	0.06 0.	17 2.89E	0.01	4.60E-0	0.02	0.08	9.50E-04	4.16E-03	0.02	0.06	9.50E-04	2.78E-03	6.90E-06	2.85E-03	0.01	1.42E-04 6.2	24E-04 2.5	85E-03 0.01	1.42E-04	4.16E-04
Stockpile Feed Conveyor #1	ES-031	CD-022 Tertiary Sizing Screen Baghouse	EP-022	Conveyor Transfer Point	458	8,760	7,008	4,012,080	3,209,664	95%	1.40E-04	0.06	0.28	3.21E-03	0.01	0.06 0.	22 3.218	-03 0.01	4.60E-05	0.02	0.09	1.05E-03	4.61E-03	0.02	0.07	1.05E-03	3.69E-03	6.90E-06	3.16E-03	0.01	1.58E-04 6.9	32E-04 3.1	16E-03 0.01	1.58E-04	5.54E-04
Tertiary Crusher Feed Bin	ES-021a	CD-021 Tertiary Crusher Baghouse	EP-021	Drop Operations	413	8,760	5,843	3,617,880	2,413,126	95%	1.24E-03	0.51	2.24	0.03	0.11	0.51 1.	50 0.0	3 0.07	5.86E-04	0.24	1.06	0.01	0.05	0.24	0.71	0.01	0.04	8.87E-05	0.04	0.16	1.83E-03	0.01	0.04 0.11	1.83E-03	0.01
Belt Feeder - Tertiary Crusher #1/#2	ES-021b&c	CD-021 Tertiary Crusher Baghouse	EP-021	Conveyor Transfer Point	413	8,760	5,843	3,617,880	2,413,126	95%	1.40E-04	0.06	0.25	2.89E-03	0.01	0.06 0.	17 2.89E	0.01	4.60E-0	0.02	0.08	9.50E-04	4.16E-03	0.02	0.06	9.50E-04	2.78E-03	6.90E-06	2.85E-03	0.01	1.42E-04 6.2	24E-04 2.5	85E-03 0.01	1.42E-04	4.16E-04
Tertiary Cone Crusher #1/#2	ES-021d&e	CD-021 Tertiary Crusher Baghouse	EP-021	Crushing	413	8,760	5,843	3,617,880	2,413,126	95%	1.20E-03	0.50	2.17	0.02	0.11	0.50 1.	45 0.0	0.07	5.40E-04	0.22	0.98	0.01	0.05	0.22	0.65	0.01	0.03	8.10E-05	0.03	0.15	1.67E-03	0.01	0.03 0.10	1.67E-03	4.89E-03
Tertiary Crusher Product Conveyor	ES-021f	CD-021 Tertiary Crusher Baghouse	EP-021	Conveyor Transfer Point	413	8,760	5,843	3,617,880	2,413,126	95%	1.40E-04	0.06	0.25	2.89E-03	0.01	0.06 0.	17 2.898	-03 0.01	4.60E-05	0.02	0.08	9.50E-04	4.16E-03	0.02	0.06	9.50E-04	2.78E-03	6.90E-06	2.85E-03	0.01	1.42E-04 6.2	24E-04 2.f	.85E-03 0.01	1.42E-04	4.16E-04
Total												4.07	17.83	0.20	0.89	4.07 11	.93 0.2	0.60		1.30	5.67	0.06	0.28	1.30	3.80	0.06	0.19		0.20	0.86	0.01	0.04	0.20 0.57	0.01	0.03

**Counting, Coresining, and conveyor transfer points envisions are taken beam P-4.7, Table 11:32-2. Wherever PMs, emission factors contained with Table 11:32-2 have been used to estimate PTE envisions. **Temporary transfer points envisions are taken beam P-4. Chapter 11:31-7 high* monitorine material is considered 1:5%. Therefore, the controlled envision factors contained with Table 11:32-2 have been used to estimate PTE envisions. **Temporary transfer points envision security or experiment in a contained with Table 11:32-2 have been used to estimate PTE envisions. **Temporary transfer points envision security or experiment in a contained with Table 11:32-2 have been used to estimate PTE envision. **Temporary transfer points envision security or experiment in a contained with Table 11:32-2 have been used to estimate PTE envision factors. **Temporary transfer points envision security or experiment in a contained with Table 11:32-2 have been used to estimate PTE envision factors. **Temporary transfer points envision security or experiment in a contained with Table 11:32-2 have been used to estimate PTE envision factors. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision factors. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision factors. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision factors. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision. **Temporary transfer points envision factors contained with Table 11:32-2 have been used to estimate PTE envision. **Temporary transfer points envision factors contained with Table 11:32-2 have be

 $E\left(\frac{ds}{foin}\right) = k(0.0032) \times \frac{\binom{p-1}{2}}{\binom{p-1}{2}}$ Where: $E - emission factor (b_1 hon)$ k - particle size multiplier (dimensionless) U - mean wind speed (mph)* M - material moisture content (b)*Note that the mean wind speed (U) was assumed to the content of th

PM Emission Factor	PM _{so} Emission Factor	PM _{2.5} Emis	sion Factor
1.24E-03 lb/ton	5.86E-04 lb/ton	8.87E-05	lb/ton
0.74	0.35	0.053	
8.15 mph	8.15 mph	8.15	mph
5.0 %	5.0 %	5.0	%

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Concentrator and Tailings

Table 6.e. Uncontrolled Ore Crushing and Processing Emission Emission Source Emission: Stockpile Feed Conveyor #2 E5-0:	on Source 5-035 -040a -040b	Method of Control CD-040 Stockpile Sizing Screen Baghouse CD-040 Stockpile Sizing Screen Bachouse	Emission Point	Emission Category 1, 2	Hourly Capacity	PTE Operating	Projected	PTE						PM							PMm							PM+s		
Stockpile Feed Conveyor#2 ES-0:	040a 040b	CD-040 Stockpile Sizing Screen Baghouse	Point	Emission Category 1, 2				PTE																						
	040a 040b		EP-040			Hours	Operating Hours	Throughput	Throughput	Capture Efficiency	Emission Factor	Uncontrolle		Controlled PTE Emissions ^{8, 4}	Proje Emissi	ntrolled ected ions ^{3, 4}	Controlled Emissions ^{3, 4}	Emission Factor	Uncontrolled Emissions		Controlled PTE Emissions ^{3, 4}	Uncontr Project Emissio	ted Emiss	rolled ions ^{2,4}	Emission Factor	Uncontrolled Pi Emissions ^{k, 4}	Emis	isions 3, 4	Incontrolled Projected missions k, 4	Controlled Emissions ^{2, 4}
	040a 040b			Conveyor Transfer Point	tons/hr 458	8.760	7.008	4.012.080	3 209 664		1.40F-04	0.06	0.28 3	Ib/hr tpy 8.21E-03 0.01	1b/hr 0.06	0.22	3.21E-03 0.01	4.60E-05	0.02 (tpy II	5F.03 4.61F.0	1b/hr 3 0.02	107 105F-03	3 69F-03	6 90E-06	1b/hr tps 16E-03 0.0	lb/hr	4 692F-04 3.1	/hr tpy	158F-04 5 54F-04
	040b			Conveyor Transfer Point	458 458	8,760	7,008	4,012,080		95%	1.40E-04			3.21E-03 0.01 3.21E-03 0.01		0.22	3.216-03 0.01	4.60E-05			5E-03 4.61E-0		0.07 1.05E-03		6.90E-06					1.58E-04 5.54E-04 1.58E-04 5.54E-04
														0.01 0.02 0.01			3.21E-03 0.01	4.60E-05					0.07 1.05E-03	3.69E-U3	6.90E-06 :			4 6.92E-04 3.1		
		CD-040 Stockpile Sizing Screen Baghouse		Drop Operations	458		7,008	4,012,080		95%	1.24E-03 1.40E-04					1.99	0.03 0.10		0.27		0.01	0.27		0.05	8.87E-05	0.04 0.1			.04 0.14	
Plant Feed Belt Feeder #1/#2 ES-040		CD-040 Stockpile Sizing Screen Baghouse		Conveyor Transfer Point	458	8,760	7,008	4,012,080		95%				3.21E-03 0.01		0.22	3.21E-03 0.01	4.60E-05			5E-03 4.61E-0		0.07 1.05E-03			16E-03 0.0		4 6.92E-04 3.1		1.58E-04 5.54E-04
Stockpile Discharge Conveyor ES-04		CD-040 Stockpile Sizing Screen Baghouse		Conveyor Transfer Point	382	8,760	7,008	3,346,320		95%	1.40E-04			2.67E-03 0.01		0.19	2.67E-03 0.01	4.60E-05			9E-04 3.85E-0	3 0.02	0.06 8.79E-04			64E-03 0.0		4 5.77E-04 2.6		1.32E-04 4.62E-04
DMS Feed Conveyor ES-04		CD-040 Stockpile Sizing Screen Baghouse		Conveyor Transfer Point	382	8,760	7,008	3,346,320		95%	1.40E-04			2.67E-03 0.01		0.19	2.67E-03 0.01	4.60E-05			9E-04 3.85E-0		0.06 8.79E-04		6.90E-06					1.32E-04 4.62E-04
DMS Feed Bin ES-03		CD-039 DMS Dryer Baghouse		Drop Operations	382	8,760	7,008	3,346,320		95%	1.24E-03			0.02 0.10		1.66	0.02 0.08	5.86E-04			0.01	0.22	0.78 0.01	0.04	8.87E-05	0.03 0.1				1.70E-03 0.01
Belt Feeder - DMS #1 ES-03		CD-039 DMS Dryer Baghouse		Conveyor Transfer Point	96	8,760	7,008	836,580		95%	1.40E-04			5.69E-04 2.93E-		0.05	6.69E-04 2.34E-03	4.60E-05			0E-04 9.62E-0		0.02 2.20E-04		6.90E-06 6					3.29E-05 1.15E-0-
Belt Feeder - DMS #2 ES-03	-039c	CD-039 DMS Dryer Baghouse	EP-039	Conveyor Transfer Point	96	8,760	7,008	836,580	669,264	95%	1.40E-04	0.01	0.06	5.69E-04 2.93E-	0.01	0.05	6.69E-04 2.34E-03	4.60E-05	4.39E-03	0.02 2.2	0E-04 9.62E-0	4 4.39E-03	0.02 2.20E-04	7.70E-04	6.90E-06	59E-04 2.89E	03 3.29E-05	5 1.44E-04 6.5	9E-04 2.31E-03	3.29E-05 1.15E-04
DMS Dryer ES-03	-039d	CD-039 DMS Dryer Baghouse	EP-039	Drop Operations	36	8,760	7,446	315,360	268,056	95%	1.24E-03	0.04	0.20 2	2.23E-03 0.01	0.04	0.17	2.23E-03 0.01	5.86E-04	0.02	0.09 1.0	5E-03 4.62E-0	3 0.02	0.08 1.05E-03	3.93E-03	8.87E-05	19E-03 0.0	1.60E-04	4 7.00E-04 3.1	9E-03 0.01	1.60E-04 5.95E-04
Dryer Discharge Conveyor #1 ES-0	-042	CD-043 DMS and Mag Sep Baghouse	EP-043	Conveyor Transfer Point	36	8,760	7,446	315,360	268,056	95%	1.40E-04	0.01	0.02 2	2.52E-04 1.10E-	0.01	0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03 (0.01 8.2	8E-05 3.63E-0	4 1.66E-03	0.01 8.28E-05	3.08E-04	6.90E-06	48E-04 1.09E	03 1.24E-05	5 5.44E-05 2.4	3E-04 9.25E-04	1.24E-05 4.62E-05
Dryer Discharge Conveyor #2 ES-0	-047	CD-043 DMS and Mag Sep Baghouse	EP-043	Conveyor Transfer Point	36	8,760	7,446	315,360	268,056	95%	1.40E-04	0.01	0.02 2	2.52E-04 1.10E-	0.01	0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03 (0.01 8.2	8E-05 3.63E-0	4 1.66E-03	0.01 8.28E-05	3.08E-04	6.90E-06	48E-04 1.09E	03 1.24E-05	5 5.44E-05 2.4	BE-04 9.25E-04	1.24E-05 4.62E-05
Dryer Discharge Conveyor #3 ES-0:	-032	CD-043 DMS and Mag Sep Baghouse	EP-043	Conveyor Transfer Point	36	8.760	7.446	315.360	268.056	95%	1.40E-04	0.01	0.02 2	2.52E-04 1.10E-	03 0.01	0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03 (0.01 8.2	8E-05 3.63E-0	4 1.66E-03	0.01 8.28E-05	3.08E-04	6.90E-06	48E-04 1.09E	03 1.24E-05	5 5.44E-05 2.4	8E-04 9.25E-04	1.24E-05 4.62E-05
Dryer Discharge Conveyor #4 ES-04	-043a	CD-043 DMS and Mag Sep Baghouse	EP-043	Conveyor Transfer Point	36	8.760	7.446	315.360	268.056	95%	1.40E-04	0.01	0.02 2	2.52E-04 1.10E-	03 0.01	0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03 (0.01 8.2	8E-05 3.63E-0	4 1.66E-03	0.01 8.28E-05	3.08E-04	6.90E-06	48E-04 1.09E	03 1.24E-05	5 5.44E-05 2.4	8E-04 9.25E-04	1.24E-05 4.62E-05
Magnetic Feed Bin ES-04	043h	CD-043 DMS and Mag Sep Baghouse	FP-043	Drop Operations	36	8.760	7.446	315 360	268.056	95%	1.74F-03	0.04	0.20 2	235.03 0.01	0.04	0.17	2.23E-03 0.01	5.86F-04	0.02	109 10	5E-03 4-62E-0	3 0.02	0.08 1.055-03	3.935,03	8.87F-05	19E-03 0.0	1.60E+04	4 7 00F-04 3 1	9E-03 0.01	1.60E-04 5.95E-04
LIMS Vibrating Feeder #1/#2 ES-04		CD-043 DMS and Mag Sep Baghouse		Conveyor Transfer Point	36	8.760	7,446	315,360	268.056	95%	1.40E-04	0.01	0.02 2	2.52E-04 1.10E-	03 0.01	0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03 (0.01 8.2	8E-05 3.63E-0	4 1.66E-03	0.01 8.28E-05	3.08E-04	6.90E-06	48E-04 1.09E	03 1.24E-05	5 5.44E-05 2.4	8E-04 9.25E-04	1.24E-05 4.62E-05
LIMS Coarse Drums #1/#2 ES-04	0434	CD-043 DMS and Mag Sep Baghouse	FP-043	Drop Operations	36	8.760	7,446	315,360	268.056	95%	1.24E-03	0.04	0.20 2	2.23E-03 0.01	0.04	0.17	2.23E-03 0.01	5.86F-04	0.02	0.09 1.0	5E-03 4.62E-0	3 0.02	0.08 1.05E-03	3.935,03	8.87E-05	19E-03 0.0	1.60E+04	4 7 00F-04 3 1	9E-03 0.01	1.60E-04 5.95E-04
ES-04		CD-043 DMS and Mag Sep Baghouse		Drop Operations	36	8.760	7,446	315,360	268,056	95%	1.24E-03			2.23E-03 0.01		0.17	2.23E-03 0.01	5.86E-04			5E-03 4.62E-0	3 0.02	0.08 1.05E-03	2 025 02		19E-03 0.0				1.60E-04 5.95E-0-
20.00		CD-043 DMS and Mag Sep Baghouse		Conveyor Transfer Point	36	8,760	7,446	315,360		95%	1.40E-04			2.52E-04 1.10E-		0.02	2.52E-04 9.38E-04				8E-05 3.63E-0				6.90E-06					1.24E-05 4.62E-0
Coarse High Intensity Magnetic Separators ES-04		CD-043 DMS and Mag Sep Baghouse		Conveyor Transfer Point	36	8,760	7,446	315,360	268,056	95%	1.40E-04			2.52E-04 1.10E-		0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03		8E-05 3.63E-0		0.01 8.28E-05			48E-04 1.09E				1.24E-05 4.62E-0
ES-04		CD-043 DMS and Mag Sep Baghouse CD-043 DMS and Mag Sep Baghouse		Conveyor Transfer Point	30	8.760	7,440	315,360		95%	1.40E-04			2.52E-04 1.10E-		0.02	2.52E-04 9.38E-04 2.52E-04 9.38E-04	4.60E-05	1.66E-03		8F.05 3.63F.0				6.90E-06	485-04 1.095				1.24E-05 4.62E-0
Coarse Magnetics Conveyor ES-04				Conveyor Transfer Point Conveyor Transfer Point	3b	8,760	7,446	6.482	5,510		1.40E-04			18E-06 2.27E-			2.52E-04 9.58E-04	4.60E-05	3.40E-05		8E-US 3.63E-U 0E-06 7.45E-0		1.27E-04 1.70E-05		6.90E-06 5	11E-06 2.24E				2.55E-07 9.50E-0
		CD-043 DMS and Mag Sep Baghouse			1					95%							5.18E-06 1.93E-05													
Coarse Concentrate Conveyor #1 ES-04 Sorter Rejects Bin ES-05		CD-043 DMS and Mag Sep Baghouse		Conveyor Transfer Point Drop Operations	36	8,760 8,760	7,446	315,360 858,480	268,056	95%	1.40E-04			2.52E-04 1.10E-		0.02	2.52E-04 9.38E-04	4.60E-05	1.66E-03 (8E-05 3.63E-0		0.01 8.28E-05			48E-04 1.09E				1.24E-05 4.62E-0
		CD-024 Sorter Rejects Bin Vent Filter			98		7,446			95%	1.24E-03		0.53	0.01 0.03		0.45	0.01 0.02	5.86E-04			7E-03 0.01	0.06	0.21 2.87E-03	0.01	8.87E-05	0.01 0.0				4.35E-04 1.62E-0
DMS Rejects Bin (Coarse Tails Bin) ES-00		CD-025 DMS Rejects Bin Vent Filter		Drop Operations	81	8,760	7,446	709,560		95%	1.24E-03			0.01 0.02		0.37	0.01 0.02	5.86E-04			7E-03 0.01	0.05	0.18 2.37E-03	0.01	8.87E-05	0.01 0.0				3.59E-04 1.34E-0
Concentrate Load Out Bin ES-0:		CD-013 Concentrate Load Out Bin Vent Filter		Drop Operations	62	8,760	7,446	543,120		95%	1.24E-03			3.84E-03 0.02		0.29	3.84E-03 0.01	5.86E-04	0.04		2E-03 0.01	0.04	0.14 1.82E-03	0.01	8.87E-05	0.01 0.0				2.75E-04 1.02E-0
Concentrate Load Out Bin ES-0:		CD-012 Concentrate Load Out Bin Vent Filter		Drop Operations	62	8,760	7,446	543,120	461,652	95%	1.24E-03			3.84E-03 0.02		0.29	3.84E-03 0.01	5.86E-04			2E-03 0.01	0.04	0.14 1.82E-03		8.87E-05	0.01 0.0				2.75E-04 1.02E-0
Concentrate Truck Load Out Belt Feeder ES-0:		N/A		Drop Operations	62	8,760	7,446	543,120			1.24E-03		0.34	0.08 0.34		0.29	0.08 0.29	5.86E-04	0.04 (0.16	0.04	0.14 0.04	0.14	8.87E-05	0.01 0.0		0.02 0	.01 0.02	0.01 0.02
Truck Load Out Stacker Conveyor ES-0:		N/A		Drop Operations	62	8,760	7,446		461,652		1.24E-03			0.08 0.34		0.29		5.86E-04			0.04 0.16	0.04	0.14 0.04			0.01 0.0				0.01 0.02
Rail Load Out Conveyor #1 ES-0:		N/A		Conveyor Transfer Point	62	8,760	7,446	543,120			1.40E-04		0.04	0.01 0.04		0.03	0.01 0.03	4.60E-05	2.85E-03 (5E-03 0.01	2.85E-03	0.01 2.85E-03		6.90E-06	28E-04 1.87E				4.28E-04 1.59E-0
Rail Load Out Conveyor #2 ES-0		N/A		Conveyor Transfer Point	62	8,760	7,446	543,120			1.40E-04			0.01 0.04		0.03	0.01 0.03	4.60E-05	2.85E-03 (5E-03 0.01	2.85E-03	0.01 2.85E-03			28E-04 1.87E				4.28E-04 1.59E-0
Rail Load Out Conveyor #3 ES-0	-008	N/A	EP-008	Conveyor Transfer Point	62	8,760	7,446	543,120	461,652		1.40E-04	0.01	0.04	0.01 0.04	0.01	0.03	0.01 0.03	4.60E-05	2.85E-03 (0.01 2.8	5E-03 0.01	2.85E-03	0.01 2.85E-03	0.01	6.90E-06	28E-04 1.87E	03 4.28E-04	4 1.87E-03 4.2	3E-04 1.59E-03	4.28E-04 1.59E-0
Rail Load Out Conveyor #4 ES-0	-007	N/A	EP-007	Conveyor Transfer Point	62	8,760	7,446	543,120	461,652		1.40E-04	0.01	0.04	0.01 0.04	0.01	0.03	0.01 0.03	4.60E-05	2.85E-03 (0.01 2.8	5E-03 0.01	2.85E-03	0.01 2.85E-03	0.01	6.90E-06	28E-04 1.87E	03 4.28E-04	4 1.87E-03 4.2	3E-04 1.59E-03	4.28E-04 1.59E-0
Rail Load Out Station Feed Bin ES-0	S-005	CD-005 Rail Load Out Bin Vent Filter	EP-005	Drop Operations	62	8,760	7,446	543,120	461,652	95%	1.24E-03	0.08	0.34 3	3.84E-03 0.02	0.08	0.29	3.84E-03 0.01	5.86E-04	0.04	0.16 1.8	2E-03 0.01	0.04	0.14 1.82E-03	0.01	8.87E-05	0.01 0.0	2.75E-04			2.75E-04 1.02E-03
Total		•										2.23	9.77	0.29 1.27	2.23	8.01	0.29 1.07		1.00	1.37	0.57	1.00	3.58 0.13	0.48		0.15 0.6	0.02	0.09	15 0.54	0.02 0.07

^{**}Coaling, contempt, and conveyor travaler points, emission as to blast from AP-41, Table 1113-12. Whenever PM, commission fusions are not available, they are assumed to bit 15th of PM, commission from the contempt of the 1133-13 by weight manhare. Based on AP-41 Chapter 1133-13 by** makes material is considered in 15th. Therefore, the controlled emission fusion contempt with Tell emission.

Tomatic from the composition assistance from a P-41 Chapter 1133-13 by makes material is considered in 15th. Therefore, the controlled emission fusion contempt with Tell emission.

**Tomatic from the contempt with the controlled emission from the controlled emission fusion contempt with Tell emission.

**Tomatic from the controlled emission from the controlled emission fusion controlled emission fusion controlled emission fusion controlled emission fusion for the controlled emission fusion fusion for the controlled emission fusion controlled emission fusion fusion fusion for the controlled emission fusio

$E\left(\frac{B}{ton}\right) = k(0.0032) \times \frac{\left(\frac{U}{5}\right)^{13}}{\left(\frac{M}{2}\right)^{18}}$ Where:
E = emission factor (lb/ton) k = particle size multiplier (dimensionless)

PM Emission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor		
1.24E-03 lb/ton	5.86E-04 lb/ton	8.87E-05 lb/ton		
0.74	0.35	0.053		
8.15 mph	8.15 mph	8.15 mph		
5.0 %	5.0 %	5.0 %		

k - purids via multiples (dimensions)

U - mean wind speed (mph)*

M - material maister contex (S)

**Able that the more under part of the context of the context of the same

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Bag Filter Emissions

Table 7.a. Bag Filter Emissions

Emission Point	PTE	PTE of Associated Equipment			Emissions Captured from Associated Equipment			Control Efficiency	Operating Hours	Bag Filter Emissions					
	PM	PM ₁₀	PM _{2.5}		PM	PM ₁₀	PM _{2.5}			Р	M	PI	M ₁₀	PN	M _{2.5}
	(lb/hr)	(lb/hr)	(lb/hr)	1	(lb/hr)	(lb/hr)	(lb/hr)			(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
CD-016 Ore Sorting Baghouse	0.87	0.37	0.06	95%	0.83	0.35	0.05	99%	8,760	0.01	0.04	0.00	0.02	5.35E-04	2.34E-03
CD-018 Sorter Bypass Conveyor Baghouse	0.68	0.31	0.047	95%	0.65	2.96E-01	4.47E-02	99%	8,760	6.51E-03	2.85E-02	2.96E-03	1.30E-02	4.47E-04	1.96E-03
CD-020 Sorter Sizing Screen Baghouse	1.29	0.43	0.07	95%	1.23	0.41	0.06	99%	8,760	0.01	0.05	4.12E-03	0.02	6.18E-04	2.71E-03
CD-021 Tertiary Crusher Baghouse	1.12	0.50	0.08	95%	1.07	0.48	0.07	99%	8,760	0.01	0.05	4.78E-03	0.02	7.20E-04	3.15E-03
CD-022 Tertiary Crusher Sizing Screens Baghouse	2.95	0.79	0.12	95%	2.80	0.75	0.11	99%	8,760	0.03	0.12	0.01	0.03	1.14E-03	4.99E-03
CD-023 Secondary Crusher Baghouse	2.64	1.01	0.15	95%	2.51	0.96	0.14	99%	8,760	0.03	0.11	0.01	0.04	1.44E-03	0.01
CD-028 Primary Crusher Baghouse	0.58	0.23	0.04	95%	0.55	0.22	0.03	99%	8,760	0.01	0.02	2.23E-03	0.01	3.34E-04	1.46E-03
CD-039 DMS Dryer Baghouse	0.54	0.25	0.04	95%	0.52	0.24	0.04	99%	8,760	5.17E-03	2.27E-02	2.41E-03	1.06E-02	3.65E-04	1.60E-03
CD-040 Stockpile Sizing Screen Baghouse	0.87	0.37	0.06	95%	0.82	0.35	0.05	99%	8,760	8.23E-03	3.61E-02	3.48E-03	1.53E-02	5.26E-04	2.31E-03
CD-043 DMS and Mag Sep Baghouse	0.18	0.08	0.01	95%	0.17	0.07	0.01	99%	8,760	1.70E-03	7.46E-03	7.43E-04	3.26E-03	1.12E-04	4.92E-04
CD-005 Rail Load Out Bin Vent Filter	0.08	0.04	0.01	95%	0.07	0.03	0.01	99%	8,760	7.30E-04	3.20E-03	3.45E-04	1.51E-03	5.23E-05	2.29E-04
CD-012 Concentrate Load Out Bin Vent Filter	0.08	0.04	0.01	95%	0.07	0.03	0.01	99%	8,760	7.30E-04	3.20E-03	3.45E-04	1.51E-03	5.23E-05	2.29E-04
CD-013 Concentrate Load Out Bin Vent Filter	0.08	0.04	0.01	95%	0.07	0.03	0.01	99%	8,760	7.30E-04	3.20E-03	3.45E-04	1.51E-03	5.23E-05	2.29E-04
CD-024 Sorter Rejects Bin Vent Filter	0.12	0.06	0.01	95%	0.12	0.05	0.01	99%	8,760	1.15E-03	5.05E-03	5.46E-04	2.39E-03	8.26E-05	3.62E-04
CD-025 DMS Rejects Bin Vent Filter	0.10	0.05	0.01	95%	0.10	0.05	0.01	99%	8,760	9.53E-04	4.18E-03	4.51E-04	1.98E-03	6.83E-05	2.99E-04
Total										0.12	0.51	0.04	0.19	0.01	0.03

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Dryer Emissions (ES-039d)

Table 8.a. - Natural Gas-Fired Dryer

Parameter	Value	Units
Number of Units	1	
Heat Rating	30	MMBtu/hr
Maximum Monthly Gas Usage	21.88	MMSCF/month
Maximum Annual Gas Usage	257.65	MMSCF/yr
Hours per year/unit operated	8,760	hr/yr
Fuel heating value	1,020	Btu/scf

Table 8.b. - Natural Gas-Fired Dryer - Emissions

D. H. A	Default Emis	ssion Factors	Uncontrolled Emissions					
Pollutant	(lb/10 ⁶ scf) 1, 2	(lb/MMBtu) ³	(lb/hr)	(tons/year) 4				
со	84	0.082	2.47	10.82				
NO _X	-	0.035	1.05	4.60				
PM/PM ₁₀ /PM _{2.5} - Fuel Combustion	7.6	0.007	0.22	0.98				
PM/PM ₁₀ /PM _{2.5} - Process Generated	Process generated emissions accounted for in Material Handling calculations							
SO ₂	0.6	0.001	0.02	0.08				
VOC	5.5	0.005	0.16	0.71				

¹ Emission factor for CO from AP-42 Chapter 1 Section 4 - Natural Gas Combustion Table 1.4-1 Emission Factors for Nitrogen Oxides (NQ) and Carbon Monoxide (CO) From Natural Gas Combustion. Emission factor for NOx is based on BACT for heaters rated greater than or equal to 10 MMBtu/hr.

Table 8.c. - Natural Gas-Fired Dryer - GHG emissions

CIIC	Default Emission Factors	Uncontrolled Emissions				
GHG	(kg/MMBtu) ^{1, 2}	(lb/hr)	(tons/year) ³			
CO ₂	53.06	720.27	3,154.79			
CH ₄	1.00E-03	1.36E-02	5.95E-02			
N ₂ O	1.00E-04	1.36E-03	5.95E-03			
CO ₂ e	-	721.02	3,158.05			

¹CO₂ emission factor obtained from 40 CFR 98 Subpart C, Table C-1 for natural gas.

Where:

CO₂e = Carbon dioxide equivalent (tons/year)

GHGi = Mass emissions of each GHG (tons/year)

GWPi = Global warming potential for each GHG (1 for CO_2 ; 25 for CH_4 ; 298 for N_2O)

² Emission factors for PM/PM₁₀/PM_{2.5}, SO₂, and VOC are from AP-42 Chapter 1 Section 4 –Natural Gas Combustion Table 1.4-2 Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion.

 $^{^3}$ To convert from lb/ 10^6 scf to lb/MMBtu, the lb/ 10^6 scf emission factors were then divided by 1,020 as specified in AP-42 Chapter 1.4, Table 1.4-2 footnote a.

⁴ Annual emissions are based on an operating schedule of 24 hours/day, 365 days/year (i.e., 8,760 hours/year).

 $^{^{2}}$ CH $_{4}$ and N $_{2}$ O emission factors from 40 CFR 98 Subpart C, Table C-2 for natural gas.

 $^{^{3}}$ Global warming potentials obtained from Table A-1 to Subpart 98 - Global Warming Potentials Equation A-1 $CO_{2}e = \sum_{G}HGi \times GWPi$

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Dryer Emissions (ES-039d)

Table 8.d. - Natural Gas-Fired Dryer - HAP emissions

HAD Dellesteret	Default Emis	ssion Factors ¹	Uncontrolle	ed Emissions
HAP Pollutant	(lb/10 ⁶ scf)	(lb/MMBtu)	(lb/hr)	(tons/year)
2-Methylnaphthalene	2.4E-05	2.4E-08	7.1E-07	3.1E-06
3-Methylchloranthrene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.6E-08	4.7E-07	2.1E-06
Acenaphthene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Acenaphthylene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Anthracene	2.4E-06	2.4E-09	7.1E-08	3.1E-07
Benz(a)anthracene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Benzene	2.1E-03	2.1E-06	6.2E-05	2.7E-04
Benzo(a)pyrene	1.2E-06	1.2E-09	3.5E-08	1.5E-07
Benzo(b)fluoranthene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Benzo(g,h,i)perylene	1.2E-06	1.2E-09	3.5E-08	1.5E-07
Benzo(k)fluoranthene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Chrysene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Dibenzo(a,h)anthracene	1.2E-06	1.2E-09	3.5E-08	1.5E-07
Dichlorobenzene	1.2E-03	1.2E-06	3.5E-05	1.5E-04
Fluoranthene	3.0E-06	2.9E-09	8.8E-08	3.9E-07
Fluorene	2.8E-06	2.7E-09	8.2E-08	3.6E-07
Formaldehyde	7.5E-02	7.4E-05	2.2E-03	9.7E-03
Hexane	1.8E+00	1.8E-03	5.3E-02	2.3E-01
Indeno(1,2,3-cd)pyrene	1.8E-06	1.8E-09	5.3E-08	2.3E-07
Naphthalene	6.1E-04	6.0E-07	1.8E-05	7.9E-05
Phenanathrene	1.7E-05	1.7E-08	5.0E-07	2.2E-06
Pyrene	5.0E-06	4.9E-09	1.5E-07	6.4E-07
Toluene	3.4E-03	3.3E-06	1.0E-04	4.4E-04
Lead	5.0E-04	4.9E-07	1.5E-05	6.4E-05
Arsenic	2.0E-04	2.0E-07	5.9E-06	2.6E-05
Cadmium	1.1E-03	1.1E-06	3.2E-05	1.4E-04
Nickel	2.1E-03	2.1E-06	6.2E-05	2.7E-04
Benzo(a)pyrene	1.2E-06	1.2E-09	3.5E-08	1.5E-07
Т	5.55E-02	2.42E-01		

¹ Emission factor from *AP-42 Chapter 1 Section 4 – Natural Gas Combustion Table 1.4-3 - Emission Factors for Speciated Organic Compounds from Natural Gas Combustion*, dated July 1998 or AP-42 Chapter 1 Section 4 – Natural Gas Combustion Table 1.4-4 - Emission Factors for Metals from Natural Gas Combustion.

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Emergency Generator Engine Emissions (IES-110/EP-110)

Table 9.a - Emergency Generator Engine Emissions

Value	Units	
1	engines	
536	hp	
500	hrs/yr	
7,000	BTU/hp-hr	
3.75	MMBTU/hr	
	500 7,000	536 hp 500 hrs/yr 7,000 BTU/hp-hr

	Emiss	ion Factor	Emissio	n Rates	
Pollutant	g/bhp-hr	(lb/MMBtu)	(lb/hr) ⁷	(tpy) ⁸	
NO _x ⁴	4.60	-	5.44	1.36	
CO ⁴	1.20	-	1.42	0.35	
VOC ⁴	0.01	-	0.01	2.95E-03	
PM/PM ₁₀ /PM _{2.5} ⁴	0.10	-	0.12	0.03	
SO ₂ ⁴	-	0.29	1.09	0.27	
CO ₂ ⁵	-	164	615.33	153.83	
CH ₄ ⁵	-	0.01	2.48E-02	6.20E-03	
N ₂ O ⁵	-	0.001	4.96E-03	1.24E-03	
CO₂e			6.17E+02	154.36	
HAP Pollutant ⁶	Emiss	ion Factor	Emissio	n Rates	
HAP Pollutant	(g/hp-hr)	(lb/MMBtu)	(lb/hr) ⁷	(tpy) ⁸	
Benzene	-	9.33E-04	3.50E-03	8.75E-04	
Toluene	-	4.09E-04	1.53E-03	3.84E-04	
Xylenes	-	2.85E-04	1.07E-03	2.67E-04	
1,3-Butadiene	-	3.91E-05	1.47E-04	3.67E-05	
Formaldehyde	-	1.18E-03	4.43E-03	1.11E-03	
Acetaldehyde	-	7.67E-04	2.88E-03	7.19E-04	
Acrolein	-	9.25E-05	3.47E-04	8.68E-05	
Benzo(a)pyrene	-	1.88E-07	7.05E-07	1.76E-07	
TOTAL HAP	TOTAL HAP			3.48E-03	

¹ Engine power output based on Caterpillar engine specified in Hatch design.

Estimated Heat Input (MMBtu/hr) = Average Brake-Specific Fuel Consumption (BSFC) (Btu/hp-hr) * Maximum Power Output (hp) * (1 MMBtu/1,000,000 Btu)

² Per 40 CFR §60.4243(d)(1)-(2), there is no time limit on the use of emergency stationary internal combustion engines in emergency situations; operation for non-emergency uses is limited to 100 hours per calendar year. However, for permitting the PTE has been based on 500 hours per year.

³ Heat input calculated assuming a brake-specific fuel capacity of 7,000 Btu/hp-hr, based on U.S. EPA AP-42 Chapter 3 Section 3.3 - Stationary Internal Combustion Sources, Table 3.3-1.

⁴ The emission factors for NMHC+NO_X, CO, and PM were obtained EPA Tier 3 Emission Standards (Table 4 to 40 CFR Part 60, Subpart IIII). To be conservative, the entire NO_X + NMHC emission standard is used as the emission factor for NO_X and for VOC. Emission factor for SO₂ taken from AP-42 Chapter 3 Section 3.3, Table 3.3-1.

⁵ From U.S. EPA AP-42 Chapter 3 Section 3.3, Table 3.3-1. CH₄ and N₂O emission factor not available from AP-42 so the Default emission factor for petroleum products from 40 CFR Part 98, Subpart C Table C-2 is used. Value listed in the table above is converted from kg/mmBtu.

⁶ From U.S. EPA AP-42 Chapter 3 Section 3.3, Table 3.3-2

⁷ Hourly Potential Emissions (lb/hr) = Estimated Heat Input (mmBtu/hr) x Emission Factor (lb/mmBtu)

⁸ Annual Potential Emissions (tpy) = Hourly Potential Emissions (lb/hr) x Annual Hours of Operation (hr/yr)

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC

Emergency Fire Pump Engine Emissions (IES-111/EP-111)

Table 10.a - Emergency Fire Pump Engine Emissions

Assumptions	Value	Units				
Number of Pump Engines	1	engines				
Power Output ¹	536	hp				
Annual Hours of Operation ²	500	hrs/yr				
Fuel Heat Rating ³	7,000	BTU/hp-hr				
Heat Input ³	3.75	MMBTU/hr				
	Em	ission Factor	Emissio	Emission Rates		
Pollutant	g/bhp-hr	(lb/MMBtu)	(lb/hr) ⁷	(tpy) ⁸		
NO _x ⁴	4.60	-	5.44	1.36		
CO ⁴	1.20	-	1.42	0.35		
VOC ⁴	0.01	-	0.01	2.95E-03		
PM/PM ₁₀ /PM _{2.5} ⁴	0.10	-	0.12	0.03		
SO ₂ ⁴	-	0.29	1.09	0.27		
CO ₂ ⁵	-	164	615.33	153.83		
CH ₄ ⁵	İ	0.01	2.48E-02			

CO ₂ e			6.17E+02	154.36		
	Emiss	ion Factor	Emission Rates			
HAP Pollutant ⁶	(g/hp-hr)	(lb/MMBtu)	(lb/hr) ⁷	(tpy) ⁸		
Benzene	-	9.33E-04	3.50E-03	8.75E-04		
Toluene	-	4.09E-04	1.53E-03	3.84E-04		
Xylenes	-	2.85E-04	1.07E-03	2.67E-04		
1,3-Butadiene	-	3.91E-05	1.47E-04	3.67E-05		
Formaldehyde	-	1.18E-03	4.43E-03	1.11E-03		
Acetaldehyde	-	7.67E-04	2.88E-03	7.19E-04		
Acrolein	-	9.25E-05	3.47E-04	8.68E-05		
Benzo(a)pyrene	-	1.88E-07	7.05E-07	1.76E-07		
TOTAL HAP		1.39E-02	3.48E-03			

0.001

4.96E-03

1.24E-03

 N_2O^{5}

Estimated Heat Input (MMBtu/hr) = Average Brake-Specific Fuel Consumption (BSFC) (Btu/hp-hr) * Maximum Power Output (hp) * (1 MMBtu/1,000,000 Btu)

¹ Engine power output based on Caterpillar engine specified in Hatch design.

² Per 40 CFR §60.4243(d)(1)-(2), there is no time limit on the use of emergency stationary internal combustion engines in emergency situations; operation for non-emergency uses is limited to 100 hours per calendar year. However, for permitting the PTE has been based on 500 hours per year.

³ Heat input calculated assuming a brake-specific fuel capacity of 7,000 Btu/hp-hr, based on U.S. EPA AP-42 Chapter 3 Section 3.3 - Stationary Internal Combustion Sources, Table 3.3-1.

⁴ The emission factors for NMHC+NO_x, CO, and PM were obtained EPA Tier 3 Emission Standards (Table 4 to 40 CFR Part 60, Subpart IIII). To be conservative, the entire NO_x + NMHC emission standard is used as the emission factor for NO_x and for VOC. Emission factor for SO₂ taken from AP-42 Chapter 3 Section 3.3, Table 3.3-1.

⁵ From U.S. EPA AP-42 Chapter 3 Section 3.3, Table 3.3-1. CH₄ and N₂O emission factor not available from AP-42 so the Default emission factor for petroleum products from 40 CFR Part 98, Subpart C Table C-2 is used. Value listed in the table above is converted from kg/mmBtu.

⁶ From U.S. EPA AP-42 Chapter 3 Section 3.3, Table 3.3-2

⁷ Hourly Potential Emissions (lb/hr) = Estimated Heat Input (mmBtu/hr) x Emission Factor (lb/mmBtu)

⁸ Annual Potential Emissions (tpy) = Hourly Potential Emissions (lb/hr) x Annual Hours of Operation (hr/yr)

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC

VOC Emissions from Product Usage (ES-051 and IES-112)

Table 11.a. VOC Emissions

Desgant	Source Number	VOC Content 1	HAP Content 1	Product Usage ²	Actual VOC Emissions ³		PTE VOC Emissions ³	
Reagent	Source Number	%	%	tons/year	lb/hr	tons/year	lb/hr	tons/year
Processing Plant Reagents								
Duramet - Ferrosilicon Powder	Insignificant	0	0	812				
Magnafloc 10 - Flocculant Powder	Insignificant	0	0	137				
Flotigam EDA (liquid)	Insignificant	0	0	43				
Methyl Isobutyl Carbinol (MIBC, 4-methyl-2-pentanol) Liquid	ES-051	100	0	12	2.74	12.00	4.57	20.00
Pionera F-100 Powder	Insignificant	0	0	361				
Dense Soda Ash (Na ₂ CO ₃ Powder)	Insignificant	0	0	326				
NaOH Powder	Insignificant	0	0	456				
Sylfat FA-2 Liquid	Insignificant	0	0	1006				
Water Treatment Plant Reagents								
NaOH	Insignificant	0	0					
Organosulfide	Insignificant	0	0					
Coagulant (Ferric chloride)	Insignificant	0	0					
Total				3,153	2.74	12.00	4.57	20.00

¹ Per product SDS.

 $^{^{\}rm 2}$ Based on "KM60-PR-DT-00001-1 Rev C Process Design Criteria HW JM DA Comments"

 $^{^3}$ Assumed 100% of VOC content is emitted. $\,$ VOC Emissions = Product Usage x VOC % Content of Product

Albemarle U.S., Inc. Kings Mountain Mine and Concentrate Plant Kings Mountain, NC Diesel Storage Tank Emissions

Table 12.a - Horizontal Diesel Storage Tank Emissions

Emission Source/	Capacity	Diameter (ft)	Length (ft)	Annual Throughput (gal/yr)	Annual Turnovers	voc		
Emission Point	(gal)					(lb/hr)	(tpy)	
IES-001	2,500	6.6	11.8	500,000	156.0	0.026	0.002	
IES-002	2,500	6.6	11.8	500,000	156.0	0.026	0.002	
IES-003	2,500	6.6	11.8	500,000	156.0	0.026	0.002	
IES-004	2,500	6.6	11.8	500,000	156.0	0.026	0.002	
Total	-	-				0.103	0.008	

Table 12.b - Vertical Diesel Storage Tank Emissions

Emission Source/ Emission Point	Capacity	Capacity Diameter Height		Annual Throughput	Annual Turnovers	voc		
	(gal)	(ft)	(ft)	(gal/yr)		(lb/hr)	(tpy)	
IES-006	25,000	14.8	21.3	2,000,000	119.5	0.196	0.012	

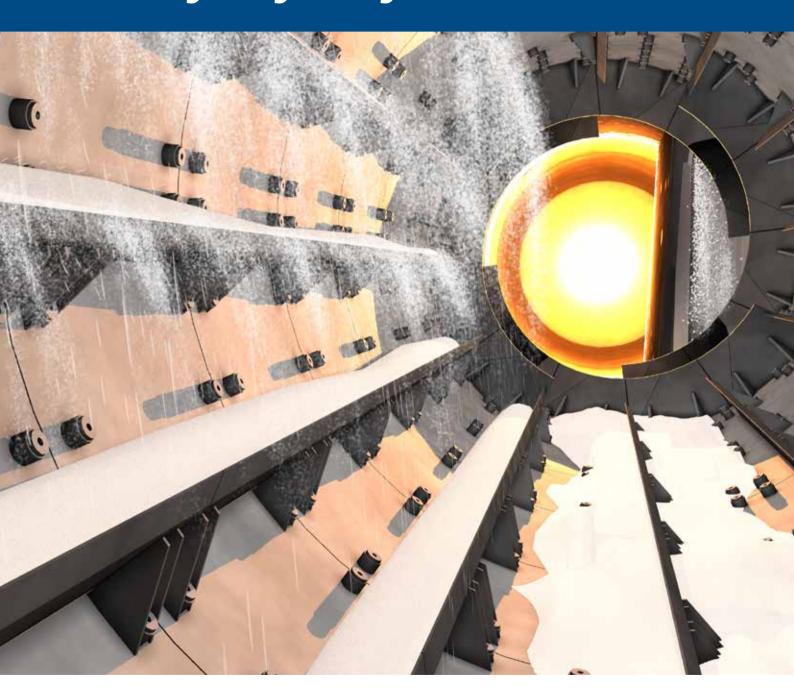
Notes: Annual emissions calculated using the Oklahoma DEQ online Storage Tank Emission Calculation Tool as recommended by NC DEQ. Hourly emissions = annual emissions / number of annual turnovers.

All VOC is assumed to be HAP.

Table 12.c - Total Diesel Storage Tank Emissions

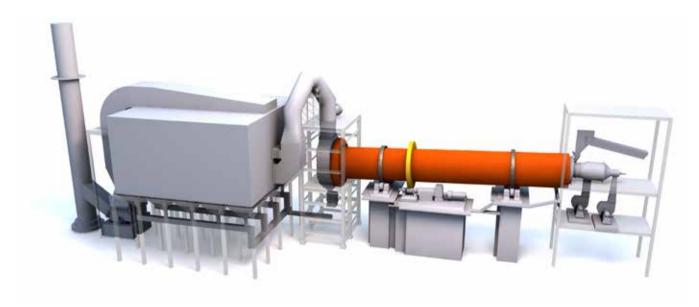
	VOC		
	(lb/hr)	(tpy)	
Total	0.299	0.020	

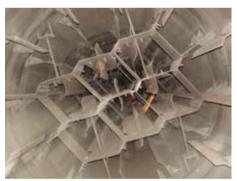
535

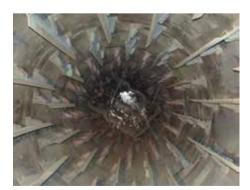

536 APPENDIX C EQUIPMENT SPECIFICATIONS

537

Doc No.: KM60-EN-RP-9091 Revision: 1


One Source


Minerals Rotary Dryer Systems



FT Series Rotary Dryers

FLSmidth is known for its rugged, dependable product and system offerings. In line with this tradition, and in an effort to support today's fast track delivery schedules, FLSmidth has developed a standardized series of rotary dryers known as the FT Series Rotary Dryers. The FT Series Rotary Dryers have been designed in standard sizes between 3.0 and 6.0 meters in diameter. These standardized designs provide quick turnaround for approval documents and improved equipment deliveries as well as increased parts availability. We also offer larger and intermediate sizes to suit the process requirements. Contact us and we'll help you select the rotary dryer that best suits your specific application.

Systems features:

 Designed for processing a wide variety of materials; nickel ore, soda ash, phosphate, bauxite, sand, petroleum coke, and many other minerals at moisture contents up to 50% Co-current or counter-current flow systems are available

Drive components:

- Gear and pinion are reversible so that both flanks of the teeth can be utilized for longer life
- Forged pinion mounted on an extended reducer shaft for sizes from 3.0 to 3.8 m diameter.
 Forged pinion with integral shaft for sizes larger than 3.8 m diameter
- Automatic gear and pinion spray lubrication system.
- Fully enclosed gear guard for maximum protection
- Grease lubricated spherical roller support bearings designed for 80,000 hour of L₁₀ life

Dryer shell and internals

- Shell is fabricated from ASTM
 A-36 carbon steel. Riding ring
 sections are made of heavier plate
 than the balance of the shell.
- Internal lifters shower the material for maximum drying and heat

transfer. The internals (starting from the feed end) consist of: feed advancing spirals to minimize backspilling, straight lifters bolted to angle brackets which are welded to the shell, and a section of bare shell at the discharge end to minimize dust entrainment

- Overlapping spring plate seals on both ends of the dryer minimize air infiltration
- Support rollers are made of high-grade forged steel and are integral with the shafts
- Greased lubricated spherical roller support bearings are designed for 80,000 hours of L₁₀ life
- Full thrust is included. The downhill thrust roller is designed to take the full downhill thrust

Gas treatment

Air pollution control system options; electrostatic precipitators (ESP), baghouses, wet scrubbers or multi-clone collectors.

Your choice of fuel

Many types of fuels are being used successfully in commercial operations including natural gas, fuel oil, coal, petroleum coke, low heating value gases and alternative fuels.

Rotary dryer standard sizes

Diameter	Length	Typical Capacity	Moto	r Size
Meters	Meters	MTPH	Kw	HP
3.0	21.0	130	112	150
3.2	22.4	160	130	175
3.4	23.8	190	149	200
3.6	25.2	230	186	250
3.8	26.6	270	223	300
4.0	28.0	310	261	350
4.2	29.4	360	298	400
4.4	30.8	410	335	450
4.6	32.2	470	373	500
4.8	33.6	540	447	600
5.0	35.0	610	484	650
5.2	36.4	675	522	700
5.4	37.8	760	560	750
5.6	39.2	850	634	850
5.8	40.6	940	671	900
6.0	42.0	1040	708	950

*Large sizes and intermediate sizes also available

One Source

Copyright © 2015 FLSmidth A/S. ALL RIGHTS RESERVED. FLSmidth is a (registered) trademark of FLSmidth A/S. This brochure makes no offers, representations or warranties (express or implied), and information and data contained in this brochure are for general reference only and may change at any time.

www.flsmidth.com

Minerals Headquarters

FLSmidth USA Inc. 7158 S. FLSmidth Drive Midvale, UT 84047-5559 Tel: +1 801 871 7000 E-mail: info.slc@flsmidth.com **Pyromet Sales**

FLSmidth Inc. 2040 Avenue C Bethlehem, PA 18017-2188 Tel: +1 610-264-6011 E-mail: info-us@flsmidth.com

Baghouse Equipment Specifications

CD-016 - Ore Sorting Baghouse

Baghouse Design Parameters:

1215

Two (2) 1215
One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		- 2
Gas Volume (typical):	44,300 -80,000	ACFM
Gas Temp (typical):	Ambient	4
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4-	"wg
No. Modules:	2 -4-	
No. Bags/Module:	180 -255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	7,920 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:		
Gross	5.59 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- · All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- · Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- . 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag
- 1-1/2" double-diaphragm pulse valves (Turbo°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- · Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- · Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

Schust

1639 Pine Hollow Rd Phone: 412-520-7603 Proposal #Budget McKees Rocks, PA 15136 Web: www.schust.com Page 2 of 7

CD-018 - Sorter Bypass Conveyor Baghouse

Baghouse Design Parameters:

0915

One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		- 1
Gas Volume (typical):	16,900 -80,000-	ACFM
Gas Temp (typical):	Ambient	× \
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4-	"wg
20.00		
No. Modules:	1 4	
No. Bags/Module:	135 -255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	2,970 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:	.)	
Gross	5.69 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag seating.
- 1-1/2" double-diaphragm pulse valves (Turbo_°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- · Walk-in-Plenum for access to the top of filter bags, if space allows.
- . One (1) 20" x 48" housing access door.

Schust

1639 Pine Hollow Rd Phone: 412-520-7603 McKees Rocks, PA 15136 Web: <u>www.schust.com</u> Proposal #Budget Page 2 of 7

CD-020 - Sorter Sizing Screen Baghouse

Proposal #Budget

Page 2 of 7

Baghouse Design Parameters:

1315

One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:	8	- /
Gas Volume (typical):	22,300 -80,000-	ACFM
Gas Temp (typical):	Ambient	× \
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4-	"wg
20.00		
No. Modules:	1 4	
No. Bags/Module:	195 -255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	4,290 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:	7	
Gross	5.2 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- · All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static
 pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag seating.
- 1-1/2" double-diaphragm pulse valves (Turbo°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- · Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

Schust

1639 Pine Hollow Rd Phone: 412-520-7603
McKees Rocks, PA 15136 Web: <u>www.schust.com</u>

CD-021 - Tertiary Crusher Baghouse

Baghouse Design Parameters:

Two (2) 1015
One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		4
Gas Volume (typical):	40,800 -80,000-	ACFM
Gas Temp (typical):	Ambient	
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4	"wg
No. Modules:	2 4	
No. Bags/Module:	150 -255-	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	6,600 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:		
Gross	6.18 3.56	ft/min
Net	4.75	ft/min—

Module Construction:

- All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag seating.
- 1-1/2" double-diaphragm pulse valves (Turbo₀).
- 120 VAC pilot solenoids in NEMA 4 housing.
- · Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

Schus

1639 Pine Hollow Rd Phone: 412-520-7603 McKees Rocks, PA 15136 Web: <u>www.schust.com</u> Proposal #Budget Page 2 of 7

CD-022 - Tertiary Crusher Sizing Screens Baghouse

Baghouse Design Parameters:

Two (2) 1015
One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		- 2
Gas Volume (typical):	37,900 -80,000-	ACFM
Gas Temp (typical):	Ambient	× \
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4-	"wg
No. Modules:	2 -4-	
No. Bags/Module:	150 -255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	6,600 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:	1	
Gross	5.74 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- · All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag seating.
- 1-1/2" double-diaphragm pulse valves (Turbo₀).
- 120 VAC pilot solenoids in NEMA 4 housing.
- Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- · Walk-in-Plenum for access to the top of filter bags, if space allows.
- . One (1) 20" x 48" housing access door.

Schus

 1639 Pine Hollow Rd
 Phone: 412-520-7603
 Proposal #Budget

 McKees Rocks, PA 15136
 Web: www.schust.com
 Page 2 of 7

CD-023 - Secondary Crusher Baghouse

Baghouse Design Parameters:

One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		
Gas Volume (typical):	28,200 -80,000-	ACFM
Gas Temp (typical):	Ambient	4
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4-	"wg
No. Modules:	1 -4	
No. Bags/Module:	255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	5,610 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:		
Gross	5.03 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag seating.
- 1-1/2" double-diaphragm pulse valves (Turbo°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- · Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- · Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

Schust

1639 Pine Hollow Rd Phone: 412-520-7603 McKees Rocks, PA 15136 Web: <u>www.schust.com</u> Proposal #Budget Page 2 of 7

CD-028 - Primary Crusher Baghouse

Baghouse Design Parameters:

Three (3)
One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		
Gas Volume (typical):	104,000 80,000	ACFM
Gas Temp (typical):	Ambient	Z
Gas Temp (maximum):	100 120 °	deg F
Gas Inlet Pressure:	-10 -4	"wg
No. Modules:	3 -4-	
No. Bags/Module:	255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	-Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	16,830 -22,440	· ft²
Net Cloth Area:	-16,830	ft2
Air/Cloth Ratio:		
Gross	6.2 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag
- 1-1/2" double-diaphragm pulse valves (Turbo°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

1639 Pine Hollow Rd Phone: 412-520-7603 Proposal #Budget McKees Rocks, PA 15136 Web: www.schust.com Page 2 of 7

CD-039 - DMS Dryer Baghouse

Baghouse Design Parameters:

1315

One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		
Gas Volume (typical):	25,000 -80,000-	ACFM
Gas Temp (typical):	Ambient	~
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4	"wg
No. Modules:	1 4	
No. Bags/Module:	195 255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	4,290 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:		
Gross	5.83 3.56	ft/min
Net	4.75	ft/min—

Module Construction:

- · All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag seating.
- 1-1/2" double-diaphragm pulse valves (Turbo

).
- 120 VAC pilot solenoids in NEMA 4 housing.
- · Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

Schus

1639 Pine Hollow Rd Phone: 412-520-7603 McKees Rocks, PA 15136 Web: <u>www.schust.com</u> Proposal #Budget Page 2 of 7

CD-040 - Stockpile Sizing Screen Baghouse

Baghouse Design Parameters:

Two (2) 1215
One (1) Suction Type Pulse Jet Baghouse – One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS	:	
Gas Volume (typical):	43,300 -80,000-	ACFM
Gas Temp (typical):	Ambient	4
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4	"wg
No. Modules:	2 -4-	
No. Bags/Module:	180 -255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	7,920 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:		\$
Gross	5.47 3.56	ft/min
Net	4.75	ft/min

Module Construction:

- All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- · Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- . 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag
- 1-1/2" double-diaphragm pulse valves (Turbo°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- · Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- · Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

Schust

1639 Pine Hollow Rd McKees Rocks, PA 15136 Web: www.schust.com

Phone: 412-520-7603

Proposal #Budget Page 2 of 7

CD-043 - DMS and Mag Sep Baghouse

Baghouse Design Parameters:

Two(2) 1015

One (1) Suction Type Pulse Jet Baghouse - One (1) Module, Size 1715, Model 168, Pulse Jet Dust Collector in a single configuration.

BAGHOUSE DESIGN PARAMETERS:		- 1
Gas Volume (typical):	37,900 -80,000-	ACFM
Gas Temp (typical):	Ambient	4
Gas Temp (maximum):	100 120	deg F
Gas Inlet Pressure:	-10 -4	"wg
No. Modules:	2 -4-	
No. Bags/Module:	150 255	
Filter Bag Diameter:	6	inches
Filter Bag Length:	168	inches
Filter Bag Material:	Polypropylene	Polyester
Cloth Area/Bag (nominal):	22	ft ²
Total Cloth Area:	6,600 -22,440	ft ²
Net Cloth Area:	16,830	ft2
Air/Cloth Ratio:)	
Gross	5.74 3.56	ft/min
Net	4.75	ft/min—

Module Construction:

- All welded modular design, fabricated from 10 ga. A-36 carbon steel.
- Reinforced for -20 "wg operational pressure which is higher than the maximum static pressure capability of the fan.
- Shipped in modular form, pre-assembled, to minimize the field installation/erection cost and time.

Housing Features:

- . 3/16" tube sheet with laser cut, nominal 6" diameter, holes for precision snap ring bag
- 1-1/2" double-diaphragm pulse valves (Turbo_°).
- 120 VAC pilot solenoids in NEMA 4 housing.
- Compressed air reservoirs/manifolds with pressure gauge.
- Internal 1-1/2" pulse air blowpipe assemblies
- Walk-in-Plenum for access to the top of filter bags, if space allows.
- One (1) 20" x 48" housing access door.

1639 Pine Hollow Rd McKees Rocks, PA 15136 Web: www.schust.com

Phone: 412-520-7603

Proposal #Budget Page 2 of 7

Concentrate Plant Reagent SDSs

SAFETY DATA SHEET

KRATON

1. Identification

Product identifier SYLFAT™ FA2

Other means of identification

SDS number 8719

Product Code 20000000258

Recommended use Industrial uses: Uses of substances as such or in preparations at industrial sites. Formulation

[mixing] of preparations and/or re-packaging (excluding alloys).

Recommended restrictions None known.

Manufacturer/Importer/Supplier/Distributor information

Company Arizona Chemical Company LLC

Address Building 100

4600 Touchton Road East, Suite 1200

City/State Jacksonville, FL

 Zip
 32246

 Country
 USA

 Phone Number
 904-928-8700

 Alternate Phone Number
 800-526-5294

 Fax Number
 904-928-8780

Emergency-US CHEMTREC 800-424-9300

2. Hazard(s) identification

Physical hazards Not classified.

Health hazards Not classified.

OSHA defined hazards Not classified.

Label elements

Hazard symbol None.
Signal word None.

Hazard statement The substance does not meet the criteria for classification.

Precautionary statement

Prevention Observe good industrial hygiene practices.

Response Wash hands after handling.

Storage Store away from incompatible materials.

Disposal Dispose of waste and residues in accordance with local authority requirements.

Hazard(s) not otherwise

classified (HNOC)

After prolonged contact with highly porous materials, this product may spontaneously combust.

Supplemental information None.

3. Composition/information on ingredients

Substances

Chemical name	Common name and synonyms	CAS number	%	
Tall Oil Fatty Acids		61790-12-3	100	

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 1 / 8

4. First-aid measures

Inhalation Move to fresh air. Call a physician if symptoms develop or persist.

Wash off with soap and water. Get medical attention if irritation develops and persists. Skin contact

Rinse with water. Get medical attention if irritation develops and persists. Eye contact

Ingestion

Most important symptoms/effects, acute and

delayed

Rinse mouth. Get medical attention if symptoms occur. Direct contact with eyes may cause temporary irritation.

Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2).

Do not use water jet as an extinguisher, as this will spread the fire.

Indication of immediate medical attention and special Treat symptomatically.

treatment needed **General information**

Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

5. Fire-fighting measures

Suitable extinguishing media

Unsuitable extinguishing media

Specific hazards arising from the chemical

Special protective equipment and precautions for firefighters During fire, gases hazardous to health may be formed. Upon decomposition, this product emits carbon monoxide, carbon dioxide and/or low molecular weight hydrocarbons.

Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

Fire fighting

equipment/instructions Specific methods

Use standard firefighting procedures and consider the hazards of other involved materials.

Wear suitable protective equipment. Move containers from fire area if you can do so without risk.

General fire hazards

Porous material such as rags, paper, insulation, or organic clay may spontaneously combust when

wetted with this material.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

Keep unnecessary personnel away. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up

Absorb in vermiculite, dry sand or earth and place into containers.

Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Use a non-combustible material like vermiculite, sand or earth to soak up the product and place into a container for later disposal. Prevent entry into waterways, sewer, basements or confined areas. Following product recovery, flush area with water.

Small Spills: Absorb in vermiculite, dry sand or earth and place into containers. Clean surface thoroughly to remove residual contamination.

Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

Environmental precautions

7. Handling and storage Precautions for safe handling Avoid discharge into drains, water courses or onto the ground.

Porous material such as rags, paper, insulation, or organic clay may spontaneously combust when wetted with this material. May auto-oxidize with sufficient heat generation to ignite if spread (as a thin film) or absorbed on porous or fibrous material. Contaminated rags and cloths must be put in fireproof containers for disposal. Avoid prolonged exposure. Avoid release to the environment. Observe good industrial hygiene practices. Follow all SDS/label precautions even after container is emptied because they may retain product residues.

Conditions for safe storage, including any incompatibilities Do not store in direct sunlight. Store in original tightly closed container. Keep containers closed when not in use. Store at ambient temperature and atmospheric pressure. Store away from incompatible materials (see Section 10 of the SDS).

Material name: SYLFAT™ FA2 MSDS/SDS # 8719 SDS US 2/8 Version #: 3.0 Revision date: 12-13-2016 Print date: 12-13-2016

8. Exposure controls/personal protection

Occupational exposure limits

U.S. - OSHA

Components	Туре	Value	Form
Tall Oil Fatty Acids (CAS 61790-12-3)	TWA	5 mg/m3	Oil Mist; Respirable
ACGIH Components	Туре	Value	Form
Tall Oil Fatty Acids (CAS 61790-12-3)	STEL	10 mg/m3	Oil Mist; Respirable

Biological limit values

No biological exposure limits noted for the ingredient(s).

Appropriate engineering controls

Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level.

Individual protection measures, such as personal protective equipment

Eye/face protection Wear safety glasses with side shields (or goggles).

Skin protection

Hand protection Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove

supplier.

Other Wear suitable protective clothing.

Respiratory protection In case of insufficient ventilation, wear suitable respiratory equipment.

Thermal hazards Wear appropriate thermal protective clothing, when necessary.

General hygiene considerations

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Eye wash fountain and emergency showers are recommended.

9. Physical and chemical properties

Appearance Liquid.
Physical state Liquid.
Form Liquid.
Color Yellow.
Odor Mild.

Odor threshold Not available.

pH Not available.

Melting point/freezing point 41 °F (5 °C)

Initial boiling point and boiling

range

> 392 °F (> 200 °C)

Flash point 399.2 °F (204.0 °C) Cleveland Open Cup

Evaporation rate 0 (n-BuAc=1) estimated

Flammability (solid, gas) Not available.

Upper/lower flammability or explosive limits

Flammability limit - lower Not available.

Flammability limit - upper

(%)

(%)

Not available.

Explosive limit - lower (%) Not available.

Explosive limit - upper (%) Not available.

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 3 / 8

Vapor pressure < 0.001 mm Hg at 20°C

Vapor density Not available.

Relative density 0.9 at 25°C/25°C; (water=1)

Solubility(ies)

Solubility (water) 12.6 mg/L at 20°C; Data is for similar product.

Partition coefficient 4.9 - 6 at 30°C; Data is for similar product.

(n-octanol/water)

Auto-ignition temperature 494.6 °F (257 °C) Data is for similar product.

Decomposition temperature Not available. **Viscosity** 20 cP at 25°C

Other information

Chemical familyTall Oil Fatty AcidsDensity898.00 kg/m³ at 20°CFlammability classCombustible IIIB estimated

Percent volatile 0 % estimated

10. Stability and reactivity

ReactivityThe product is stable and non-reactive under normal conditions of use, storage and transport.

Chemical stability Material is stable under normal conditions.

Possibility of hazardous

reactions

No dangerous reaction known under conditions of normal use.

Conditions to avoid Strong oxidizing agents. Avoid temperatures exceeding the flash point. Contact with incompatible

materials. Porous material such as rags, paper, insulation, or organic clay may spontaneously

combust when wetted with this material.

Incompatible materials

Hazardous decomposition

products

Upon decomposition this product emits acrid dense smoke with carbon dioxide, carbon monoxide,

water and other products of combustion.

11. Toxicological information

Information on likely routes of exposure

Inhalation Prolonged inhalation may be harmful.

Skin contactNo adverse effects due to skin contact are expected.Eye contactDirect contact with eyes may cause temporary irritation.

Strong oxidizing agents.

Tall Oil Fatty Acids Draize Test, No eye irritation.

Result: Negative Species: Albino rabbit

Organ: Eye

Test Duration: 7 days Observation Period: 7 days

Ingestion Expected to be a low ingestion hazard.

Symptoms related to the physical, chemical and toxicological characteristics

Exposure may cause temporary irritation, redness, or discomfort.

Information on toxicological effects

Acute toxicity Based on available data, the classification criteria are not met.

Components Species Test Results

Tall Oil Fatty Acids (CAS 61790-12-3)

Acute Dermal

LD50 Albino rabbit > 2000 mg/kg, 14 days At this dose no

death occurred.

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 4 / 8

Components Species Test Results

Oral

LD50 Albino Sprague-Dawley rat > 10000 mg/kg, 14 days At this dose no

death occurred.

* Estimates for product may be based on additional component data not shown.

Skin corrosion/irritation Prolonged skin contact may cause temporary irritation.

Serious eye damage/eye

irritation

Direct contact with eyes may cause temporary irritation.

Eye Contact

Tall Oil Fatty Acids Draize Test, No eye irritation.

Result: Negative Species: Albino rabbit

Organ: Eye

Test Duration: 7 days Observation Period: 7 days

Respiratory or skin sensitization

Respiratory sensitization Not available.

Skin sensitization This product is not expected to cause skin sensitization.

Skin sensitization

Tall Oil Fatty Acids Buehler Test, Not a skin sensitizer.

Result: Negative Species: Guinea pig Organ: Skin Notes: OECD 406

Maximisation Assay (Magnusson and Kligman), Not a skin

sensitizer. Result: Negative Species: Guinea pig Organ: Skin Notes: OECD 406

Germ cell mutagenicityNo data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Mutagenicity

Tall Oil Fatty Acids Germ Cell Mutagenicity: Ames, No data available to indicate

product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Result: Negative

Species: Salmonella typhimurium

Notes: OECD 471

Carcinogenicity This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.

IARC Monographs. Overall Evaluation of Carcinogenicity

Not listed.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not regulated.

US. National Toxicology Program (NTP) Report on Carcinogens

Not listed.

Reproductive toxicityThis product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity -

single exposure

Not classified.

Specific target organ toxicity -

repeated exposure

Not classified.

Aspiration hazard Not available.

Chronic effects Prolonged inhalation may be harmful.

12. Ecological information

EcotoxicityThe product is not classified as environmentally hazardous. However, this does not exclude the

possibility that large or frequent spills can have a harmful or damaging effect on the environment.

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 5 / 8

Components		Species	Test Results
Tall Oil Fatty Acids (C	CAS 61790-12-3)		
	EC50	Bacteria (Pseudomonas putida)	> 10000 mg/l, 16 hr
Aquatic			
Algae	EL50	Green algae (Selenastrum capricornutum)	> 1000 mg/l, 72 hr Growth rate; OECD 201
Crustacea	EL50	Water flea (Daphnia magna)	> 1000 mg/l, 48 hr OECD 202
Fish	LL50	Zebra danio (Danio rerio)	> 10000 mg/l, 96 hr

^{*} Estimates for product may be based on additional component data not shown.

Persistence and degradability The product is biodegradable.

Biodegradability

Percent degradation (Aerobic biodegradation)

Tall Oil Fatty Acids 88 - 100 % CO2 Evolution Test Species: Activated sewage sludge

Test Duration: 28 d

Bioaccumulative potential

Mobility in soil No data available.

Other adverse effects No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation

potential, endocrine disruption, global warming potential) are expected from this component.

13. Disposal considerations

Disposal instructionsCollect and reclaim or dispose in sealed containers at licensed waste disposal site.

Local disposal regulations Dispose in accordance with all applicable regulations.

Hazardous waste codeThe waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Waste from residues / unused

products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see:

Disposal instructions).

Contaminated packaging Since emptied containers may retain product residue, follow label warnings even after container is

emptied. Empty containers should be taken to an approved waste handling site for recycling or

disposal.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to

Annex II of MARPOL 73/78 and

the IBC Code

15. Regulatory information

US federal regulations This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard

Communication Standard, 29 CFR 1910.1200.

All components are on the U.S. EPA TSCA Inventory List.

Use as animal feed is prohibited in the United States. Similar regulations may restrict such use in

other locations.

Not available.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

SARA 304 Emergency release notification

Not regulated.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1050)

Not regulated.

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 6 / 8

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Hazard categories Immediate Hazard - No

Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous No

chemical

SARA 313 (TRI reporting)

Not regulated.

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act

Not regulated.

(SDWA)

NFPA ratings Health: 1

Flammability: 1 Instability: 0

NFPA ratings

16. Other information, including date of preparation or last revision

 Issue date
 02-23-2015

 Revision date
 12-13-2016

Version # 3.0

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 7 / 8

Disclaimer

KRATON CORPORATION urges each customer or recipient of this SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this SDS and any hazards associated with the product. The information set forth in this document, as of the date of this document, is based on present knowledge, obtained from reliable sources and made to our reasonable ability and in good faith. Such information is made without any warranty or guarantee whatsoever, and shall establish no legal duty or responsibility on the part of the author(s), their employer or its affiliates. The information given is designed only as guidance and its completeness is not guaranteed. The information is not a guarantee of any specific product properties, features, qualities or specifications.

The information relates only to the specific product designated as shipped, and may not be valid for such product used in combination with any other materials or products, or in any process, unless expressly specified in this document. Nothing set forth in this document shall be construed as a recommendation or license to use any product in conflict with, or as claimed by, any existing patents rights. The user alone must finally determine whether a contemplated use of a product will infringe any such patents. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities are in compliance with all Local, Federal and International Legislation and Local Permits.

We, for ourselves and on behalf of our affiliates, expressly disclaim any and all liability for any damages or injuries arising out of any activities relating in any way to the information set forth in this document. Due to the proliferation of sources for information, we are not and cannot be responsible for SDSs obtained from any other source other than ourselves. If you have obtained an SDS from another source or if you are not sure that the SDS you have is current, please contact us for the most current version.

*KRATON, the KRATON logo, ARIZONA CHEMICAL, the "Green Super Drop" logo, 1101, ABIETA, AQUATAC, CARIFLEX, CENTURY, CENWAX, ELEXAR, E-LEXAR, , IPD, NEXAR, SYLFAT, SYLVABLEND, SYLVACOTE, SYLVAFUEL, SYLVAGUM, SYLVALITE, SYLVAMIN, SYLVAPINE, SYLVAPRINT, SYLVARES, SYLVAROAD, SYLVAROS, SYLVASOL, SYLVATAC, SYLVATAL, SYLVATRAXX, UNICLEAR, UNIDYME, UNIFLEX, UNI-REZ, UNI-TAC, and ZONATAC are either trademarks or registered trademarks of Kraton Corporation, or its subsidiaries or affiliates, in one or more, but not all countries.

©2016 Kraton Corporation

Revision information

Hazard(s) identification: National / local information Ecological Information: Ecotox Property Data

 Material name: SYLFAT™ FA2
 MSDS/SDS # 8719
 sps us

 Version #: 3.0
 Revision date: 12-13-2016
 Print date: 12-13-2016
 8 / 8

Washington Mills Duramet Not Available

Chemwatch: 9258123 Version No: 4.1

Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

Chemwatch Hazard Alert Code: 2

Issue Date: 11/01/2019 Print Date: 02/01/2023 S.GHS.USA.EN

SECTION 1 Identification

Product Identifier

Froduct identifier	
Product name	Washington Mills Duramet
Chemical Name	Not Applicable
Synonyms	Ferrosilicon
Chemical formula	Not Applicable
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Not Available
Address	Not Available
Telephone	Not Available
Fax	Not Available
Website	Not Available
Email	Not Available

Emergency phone number

• , ,	
Association / Organisation	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	+1 855-237-5573
Other emergency telephone numbers	+61 3 9573 3188

Once connected and if the message is not in your preferred language then please dial 01

Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

Chemwatch Hazard Ratings

	Min	Max	
Flammability	0		
Toxicity	2	i	0 = Minimum
Body Contact	1	- 1	1 = Low
Reactivity	2	1	2 = Moderate
Chronic	0	i	3 = High 4 = Extreme

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Serious Eye Damage/Eye Irritation Category 2B, Acute Toxicity (Oral) Category 4

Label elements

Hazard pictogram(s)

Page 2 of 12

Washington Mills Duramet

Issue Date: 11/01/2019
Print Date: 02/01/2023

Signal word Warning

Hazard statement(s)

Version No: 4.1

H320	Causes eye irritation.
H302	Harmful if swallowed.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

• • • • • • • • • • • • • • • • • • • •	
P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313	If eye irritation persists: Get medical advice/attention.
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P330	Rinse mouth.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7439-89-6	70-80	iron
7440-21-3	10-20	silicon
7440-32-6	5-10	titanium
7429-90-5	<5	aluminium
Not Available	<1	other metallics, as impurities

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 First-aid measures

Description of first aid measures

Skin Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Eye Contact

 Seek medical attention without delay; if pain persists or recurs seek medical attention.

 Removed of contact leaves often an averaging the bound only be undertaken by a killed pain.
 - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
 - ► DO NOT attempt to remove particles attached to or embedded in eye
 - Lay victim down, on stretcher if available and pad **BOTH** eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye.
 - ▶ Seek urgent medical assistance, or transport to hospital.

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

For thermal burns:

- Decontaminate area around burn.
- Consider the use of cold packs and topical antibiotics.

For first-degree burns (affecting top layer of skin)

- Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides.
- ► Use compresses if running water is not available
- ▶ Cover with sterile non-adhesive bandage or clean cloth.
- Do NOT apply butter or ointments; this may cause infection.
- ▶ Give over-the counter pain relievers if pain increases or swelling, redness, fever occur.

For second-degree burns (affecting top two layers of skin)

- Cool the burn by immerse in cold running water for 10-15 minutes.
- ▶ Use compresses if running water is not available.
- Do NOT apply ice as this may lower body temperature and cause further damage.
- Do NOT break blisters or apply butter or ointments; this may cause infection.
- ▶ Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape.

To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort):

Chemwatch: 9258123 Page 3 of 12 Issue Date: 11/01/2019
Version No: 4.1 Print Date: 02/01/2023

Washington Mills Duramet

Lav the person flat. ► Elevate feet about 12 inches ▶ Elevate burn area above heart level, if possible. Cover the person with coat or blanket. ► Seek medical assistance For third-degree burns Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Separate burned toes and fingers with dry, sterile dressings. ▶ Do not soak burn in water or apply ointments or butter; this may cause infection. To prevent shock see above. For an airway burn, do not place pillow under the person's head when the person is lying down. This can close the airway. Have a person with a facial burn sit up ▶ Check pulse and breathing to monitor for shock until emergency help arrives. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary ► Transport to hospital, or doctor. ► IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. Ingestion Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to iron and its derivatives:

- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
 Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- P Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Fire-fighting measures

Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM

- ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- ► DO NOT use halogenated fire extinguishing agents.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas

Special protective equipment and precautions for fire-fighters

Chemwatch: 9258123 Page 4 of 12 Issue Date: 11/01/2019 Version No: 4.1 Print Date: 02/01/2023

Washington Mills Duramet

Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Fire Fighting Use fire fighting procedures suitable for surrounding area. ▶ DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. ▶ DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Fire/Explosion Hazard Decomposition may produce toxic fumes of: silicon dioxide (SiO2) metal oxides May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

motificate and material for conte	
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment.
Major Spills	If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remelting scrap. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling	For molten metals: Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off water water and other forms of contamination on or contained in scrap or remelt ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. Avoid all personal contact, including inhalation.
	 Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps.
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers.

	► Bulk bags: Reinforced bags required for dense materials.
	• CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release
Suitable container	▶ Heavy gauge metal packages / Heavy gauge metal drums
	Polyethylene or polypropylene container.
	► Check all containers are clearly labelled and free from leaks.
	The material is described as an electropositive metal.
	The activity or electromotive series of metals is a listing of the metals in decreasing order of their reactivity with hydrogen-ion sources such as
	water and acids. In the reaction with a hydrogen-ion source, the metal is oxidised to a metal ion, and the hydrogen ion is reduced to H2. The ordering of the activity series can be related to the standard reduction potential of a metal cation.
	For aluminas (aluminium oxide):
	Incompatible with hot chlorinated rubber.
	In the presence of chlorine trifluoride may react violently and ignite.
	-May initiate explosive polymerisation of olefin oxides including ethylene oxide.
Storage incompatibility	-Produces exothermic reaction above 200°C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals.
	Titanium:
	▶ reacts with oxidising agents, aluminium, carbon dioxide, chlorinated solvents, strong acids, oxygen, halogens
	▶ reacts violently with cupric or lead oxide when heated
	• powder mixtures with potassium perchlorate, with nickel and infusional earth ignite with very small sparks causing severe explosion
	with trichloroethylene or trichlorofluoroethylene with flash or spark on heavy impact
	▶ reacts with fluorine at 150 deg C, chlorine at 300 deg C, bromine at 360 deg C and iodine at >360 deg C
	when heated at red heat (700 deg C) decomposes steam to hydrogen and when heated above above 800 deg C burns vigorously in pure

Page **5** of **12**

Chemwatch: 9258123 Issue Date: 11/01/2019 Version No: 4.1 Print Date: 02/01/2023 **Washington Mills Duramet**

- nitrogen; burns in carbon dioxide above 550 deg C; the hot metal explodes violently on contact with water.
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
 These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.

- The state of subdivision may affect the results.
- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	iron	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	iron	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	iron	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	iron	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	iron	Particulates not otherwise regulated	Not Available	Not Available	Not Available	See Appendix D
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silicon	Silicon- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silicon	Silicon- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	silicon	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	silicon	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	silicon	Silicon - respirable	5 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	silicon	Silicon - total	10 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	titanium	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	titanium	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	titanium	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	titanium	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	titanium	Particulates not otherwise regulated	Not Available	Not Available	Not Available	See Appendix D
US OSHA Permissible Exposure Limits (PELs) Table Z-1	aluminium	Aluminum Metal (as Al)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	aluminium	Aluminum Metal (as Al)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	aluminium	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	aluminium	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	aluminium	Aluminum - total	10 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	aluminium	Aluminum - respirable	5 mg/m3	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	aluminium	Aluminum (pyro powders and welding fumes, as Al)	5 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
iron	3.2 mg/m3	35 mg/m3	150 mg/m3
silicon	45 mg/m3	100 mg/m3	630 mg/m3
titanium	30 mg/m3	330 mg/m3	2,000 mg/m3

Ingredient	Original IDLH	Revised IDI H

Version No: 4.1

Washington Mills Duramet

Issue Date: 11/01/2019
Print Date: 02/01/2023

Ingredient	Original IDLH	Revised IDLH
iron	Not Available	Not Available
silicon	Not Available	Not Available
titanium	Not Available	Not Available
aluminium	Not Available	Not Available

Exposure controls

Appropriate engineering controls

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Avoid ignition sources.
- Good housekeeping practices must be maintained.
- Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.

Personal protection

Eye and face protection

- Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task.

Skin protection

See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Hands/feet protection

Personal hygiene is a key element of effective hand care.

• Protective gloves eg. Leather gloves or gloves with Leather facing
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.Barrier cream.
- Skin cleansing cream.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- · Use approved positive flow mask if significant quantities of dust becomes airborne
- · Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

	• •		
Appearance	Gray granular solid with no odour; does not mix with water.		
Physical state	Divided Solid	Relative density (Water = 1)	6.7
Odour	Not Available	Partition coefficient n-octanol / water	Not Available

Chemwatch: **9258123**Version No: **4.1**

Washington Mills Duramet

Issue Date: **11/01/2019**Print Date: **02/01/2023**

Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	2700	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Presence of heat source and ignition source
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. In animals, instilling silicon dust in the windpipe caused only slight damage to the epithelium. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating, diarrhoea, excessive urination and prostration may also occur.
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract
Skin Contact	There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation. Irritation and skin reactions are possible with sensitive skin Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Еуе	There is some evidence to suggest that this material can cause eye irritation and damage in some persons. Contact with the eye by metal dusts may produce mechanical abrasion or foreign body penetration of the eyeball. Iron particles embedded in the eye may cause discolouration of the cornea and iris, and effects on the pupil such as poor rection to light and accommodation.
Chronic	Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm. Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are

Mark Santan Mills Dansard	TOXICITY	IRRITATION
Washington Mills Duramet	Not Available	Not Available

nose and throat irritants.

Chemwatch: 9258123 Version No: 4.1

Washington Mills Duramet

Issue Date: 11/01/2019 Print Date: 02/01/2023

	TOXICITY	IRRITATION	
iron	Oral (Rat) LD50: 98600 mg/kg ^[2]	Not Available	
	Ofai (Rai) LD50. 96600 mg/kg	Not Available	
	TOXICITY	IRRITATION	
silicon	Dermal (rabbit) LD50: >5000 mg/kg ^[1]	Eye: no adverse e	ffect observed (not irritating) ^[1]
	Oral (Rat) LD50: 3160 mg/kg ^[2]	Skin: no adverse e	ffect observed (not irritating) ^[1]
***	TOXICITY	IRRITATION	
titanium	Oral (Rat) LD50: >2000 mg/kg ^[1]	Not Available	
	TOXICITY	IRRITATION	
aluminium	Inhalation(Rat) LC50: >2.3 mg/l4h ^[1]	Eye: no adverse e	ffect observed (not irritating) ^[1]
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse e	effect observed (not irritating) ^[1]
Legend:	Value obtained from Europe ECHA Registered Substa specified data extracted from RTECS - Register of Toxic	•	ed from manufacturer's SDS. Unless otherwise
SILICON	Asthma-like symptoms may continue for months or even known as reactive airways dysfunction syndrome (RADS criteria for diagnosing RADS include the absence of prevasthma-like symptoms within minutes to hours of a docu airflow pattern on lung function tests, moderate to severe	s) which can occur after exposure to be vious airways disease in a non-atopic mented exposure to the irritant. Othe	nigh levels of highly irritating compound. Main individual, with sudden onset of persistent
	lymphocytic inflammation, without eosinophilia. Injection of silicon into the peritoneal cavity produced on mouth did not cause clinical signs or cell changes. Silico The material may be irritating to the eye, with prolonged conjunctivitis.	ly minor local trauma and foreign boo n dioxide was largely eliminated in th	holine challenge testing, and the lack of minimal y reaction. In animal testing, silicon dioxide given by e faeces.
Washington Mills Duramet & SILICON & TITANIUM & ALUMINIUM	Injection of silicon into the peritoneal cavity produced on mouth did not cause clinical signs or cell changes. Silico The material may be irritating to the eye, with prolonged	ly minor local trauma and foreign boo in dioxide was largely eliminated in th contact causing inflammation. Repea	holine challenge testing, and the lack of minimal y reaction. In animal testing, silicon dioxide given by e faeces.
SILICON & TITANIUM &	Injection of silicon into the peritoneal cavity produced on mouth did not cause clinical signs or cell changes. Silico The material may be irritating to the eye, with prolonged conjunctivitis.	ly minor local trauma and foreign boo in dioxide was largely eliminated in th contact causing inflammation. Repea	holine challenge testing, and the lack of minimal y reaction. In animal testing, silicon dioxide given by e faeces.
SILICON & TITANIUM & ALUMINIUM	Injection of silicon into the peritoneal cavity produced on mouth did not cause clinical signs or cell changes. Silico The material may be irritating to the eye, with prolonged conjunctivitis. No significant acute toxicological data identified in literat	ly minor local trauma and foreign boo in dioxide was largely eliminated in th contact causing inflammation. Repea ure search.	holine challenge testing, and the lack of minimal y reaction. In animal testing, silicon dioxide given by e faeces. Ited or prolonged exposure to irritants may produce
SILICON & TITANIUM & ALUMINIUM Acute Toxicity	Injection of silicon into the peritoneal cavity produced on mouth did not cause clinical signs or cell changes. Silico The material may be irritating to the eye, with prolonged conjunctivitis. No significant acute toxicological data identified in literat	ly minor local trauma and foreign boo in dioxide was largely eliminated in the contact causing inflammation. Repea ure search. Carcinogenicity	holine challenge testing, and the lack of minimal y reaction. In animal testing, silicon dioxide given by e faeces. Ited or prolonged exposure to irritants may produce

Legend:

Aspiration Hazard

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 Ecological information

Mutagenicity

X

Toxicity

	Endpoint Test Duration (hr) Species Not Available Not Available Not Available			Species		Value	Source
Washington Mills Duramet				Not Available	Not Available		
	Endpoint	Test Duration (hr)	Sp	ecies	Value	е	Source
	NOEC(ECx)	48h	Alg	gae or other aquatic plants	0.1-4	mg/l	4
iron	EC50	72h	Alg	ae or other aquatic plants	18mg	g/l	2
	LC50	96h	Fis	h	0.004	199-0.00819mg/l	4
	EC50	48h	Cru	ustacea	>100	mg/l	2
silicon	Endpoint	Test Duration (hr)		Species		Value	Source
	EC10(ECx)	1.28h		Algae or other aquatic plants		>=66<=88mg/l	2
	EC50	72h		Algae or other aquatic plants		~250mg/l	2
	Endpoint	Test Duration (hr)		Species		Value	Sourc
	NOEC(ECx)	48h		Crustacea		<=1mg/l	2
titanium	EC50	72h Algae or other aquatic plants			13mg/l	2	
	LC50	96h Fish			>100mg/l	2	
	EC50	48h		Crustacea		>100mg/l	2
aluminium	Endpoint	Test Duration (hr)		Species		Value	Sourc
	NOEC(ECx)	48h	(Crustacea		>100mg/l	1
	EC50	96h	,	Algae or other aquatic plants		0.0054mg/l	2

Chemwatch: 9258123 Page 9 of 12 Version No: 4.1

Washington Mills Duramet

EC50 72h Algae or other aquatic plants 0.0169mg/l 2 0.078-0.108mg/l LC50 96h Fish 2 EC50 48h Crustacea 0.7364mg/l

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate: ▶ Reduction

Product / Packaging disposal

- ► Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- ▶ Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant

NO

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
iron	Not Available
silicon	Not Available
titanium	Not Available
aluminium	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
iron	Not Available
silicon	Not Available

Issue Date: 11/01/2019 Print Date: 02/01/2023

Washington Mills Duramet

Issue Date: 11/01/2019 Print Date: 02/01/2023

Product name	Ship Type
titanium	Not Available
aluminium	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

iron is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US DOE Temporary Emergency Exposure Limits (TEELs)

US NIOSH Recommended Exposure Limits (RELs)

silicon is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US - Massachusetts - Right To Know Listed Chemicals

US DOE Temporary Emergency Exposure Limits (TEELs)

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-3 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US TSCA Chemical Substance Inventory - Interim List of Active Substances

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US TSCA Chemical Substance Inventory - Interim List of Active Substances

titanium is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US DOE Temporary Emergency Exposure Limits (TEELs)

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US TSCA Chemical Substance Inventory - Interim List of Active Substances

aluminium is found on the following regulatory lists

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5

US - Massachusetts - Right To Know Listed Chemicals

US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)

US Department of Homeland Security (DHS) - Chemical Facility Anti-Terrorism Standards (CFATS) - Chemicals of Interest

US EPCRA Section 313 Chemical List

US NIOSH Recommended Exposure Limits (RELs)

US OSHA Permissible Exposure Limits (PELs) Table Z-1

US OSHA Permissible Exposure Limits (PELs) Table Z-3

US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

US TSCA Chemical Substance Inventory - Interim List of Active Substances

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
In contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No
Acute toxicity (any route of exposure)	Yes
Reproductive toxicity	No
Skin Corrosion or Irritation	No
Respiratory or Skin Sensitization	No
Serious eye damage or eye irritation	No
Specific target organ toxicity (single or repeated exposure)	No
Aspiration Hazard	No
Germ cell mutagenicity	No
Simple Asphyxiant	No

Version No: 4.1

Chemwatch: 9258123

Washington Mills Duramet

Issue Date: 11/01/2019 Print Date: 02/01/2023

Hazards Not Otherwise Classified No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

State Regulations

US. California Proposition 65

None Reported

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (iron; silicon; titanium; aluminium)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (iron; silicon; titanium; aluminium)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	11/01/2019
Initial Date	03/11/2014

SDS Version Summary

Version	Date of Update	Sections Updated
3.1	03/13/2019	Expiration. Review and Update
4.1	11/01/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

Chemwatch: 9258123 Page **12** of **12** Issue Date: 11/01/2019 Version No: 4.1 Print Date: 02/01/2023

Washington Mills Duramet

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

MAGNAFLOC 10

PRODUCT DISTRIBUTED BY / PRODUIT DISTRIBUÉ PAR

Brenntag Canada Inc. 43 Jutland Road. Toronto, Ontario M8Z 2G6 (416) 259-8231 WHMIS Number: 00061491 Index: HCI0346/16A

Effective Date: 2016 February 09 Date of Revision: 2016 February 09 Website: http://www.brenntag.ca

EMERGENCY TELEPHONE NUMBER (For Emergencies Involving Chemical Spills or Releases)
1 855 273 6824

NUMÉRO DE TÉLÉPHONE D'URGENCE (pour les urgences impliquant des rejets ou des déversements chimiques)

This document consists of an SDS in English and French in GHS format.

Le présent document est une FDS en anglais et en français en format SGH.

This product is considered to be non-regulated by WHMIS standards and therefore this SDS will not be subject to any periodic or time based update.

Le présent produit n'est pas réglementé par le SIMDUT. La fiche signalétique ne fera donc pas l'objet de mises à jour périodiques.

READ THE ENTIRE SAFETY DATA SHEET (SDS) FOR THE COMPLETE HAZARD EVALUATION OF THIS PRODUCT.

LIRE LA FICHE DE DONNÉES DE SÉCURITÉ (FDS) POUR UNE ÉVALUATION COMPLÈTE DES DANGERS QUE REPRÉSENTE CE PRODUIT.

Safety Data Sheet Magnafloc® 10

Revision date : 2016/02/09

Page: 1/9

(30481447/SDS_GEN_CA/EN)

1. Identification

Version: 3.0

Product identifier used on the label

Magnafloc® 10

Recommended use of the chemical and restriction on use

Recommended use*: flocculation agent

Details of the supplier of the safety data sheet

Company:

BASF Canada Inc. 100 Milverton Drive Mississauga, ON L5R 4H1, CANADA

Telephone: +1 289 360-1300

Emergency telephone number

CANUTEC (reverse charges): (613) 996-6666 BASF HOTLINE: (800) 454-COPE (2673)

Other means of identification

Chemical family: polyacrylamide, anionic

2. Hazards Identification

According to Hazardous Products Regulations (HPR) (SOR/2015-17)

Classification of the product

No need for classification according to GHS criteria for this product.

Label elements

The product does not require a hazard warning label in accordance with GHS criteria.

Hazards not otherwise classified

^{*} The "Recommended use" identified for this product is provided solely to comply with a Federal requirement and is not part of the seller's published specification. The terms of this Safety Data Sheet (SDS) do not create or infer any warranty, express or implied, including by incorporation into or reference in the seller's sales agreement.

Magnafloc® 10

Revision date: 2016/02/09 Page: 2/9
Version: 3.0 (30481447/SDS_GEN_CA/EN)

Very slippery when wet.

Labeling of special preparations (GHS):

This product is not combustible in the form in which it is shipped by the manufacturer, but may form a combustible dust through downstream activities (e.g. grinding, pulverizing) that reduce its particle size.

According to Controlled Products Regulations (CPR) (SOR/88-66)

Emergency overview

Caution - Slippery when wet!

May cause some eye irritation which should cease after removal of the product.

May cause some irritation to the respiratory system if dust is inhaled.

May cause skin irritation.

This type of product has a tendency to create dust if roughly handled. It does not burn readily but as with many organic powders, flammable dust clouds may be formed in air.

Take precautionary measures against static discharges.

Use with local exhaust ventilation.

Wear suitable protective clothing, gloves and eye/face protection.

3. Composition / Information on Ingredients

According to Hazardous Products Regulations (HPR) (SOR/2015-17)

This product does not contain any components classified as hazardous under the referenced regulation.

4. First-Aid Measures

Description of first aid measures

General advice:

Remove contaminated clothing.

If inhaled:

If difficulties occur after dust has been inhaled, remove to fresh air and seek medical attention.

If on skin:

Wash thoroughly with soap and water.

If in eyes:

Wash affected eyes for at least 15 minutes under running water with eyelids held open.

If swallowed:

Rinse mouth and then drink plenty of water. Check breathing and pulse. Place victim in the recovery position, cover and keep warm. Loosen tight clothing such as a collar, tie, belt or waistband. Seek medical attention. Never induce vomiting or give anything by mouth if the victim is unconscious or having convulsions.

Most important symptoms and effects, both acute and delayed

Magnafloc® 10

Revision date: 2016/02/09 Page: 3/9
Version: 3.0 (30481447/SDS GEN CA/EN)

Symptoms: The most important known symptoms and effects are described in the labelling (see section 2) and/or in section 11., Further important symptoms and effects are so far not known.

Indication of any immediate medical attention and special treatment needed

Note to physician

Treatment: Treat according to symptoms (decontamination, vital functions), no

known specific antidote.

5. Fire-Fighting Measures

Extinguishing media

Suitable extinguishing media:

dry powder, foam

Unsuitable extinguishing media for safety reasons:

water jet

Additional information:

If water is used, restrict pedestrian and vehicular traffic in areas where slip hazard may exist.

Special hazards arising from the substance or mixture

Hazards during fire-fighting:

carbon oxides, nitrogen oxides

The substances/groups of substances mentioned can be released in case of fire. Very slippery when wet.

Advice for fire-fighters

Protective equipment for fire-fighting:

Wear a self-contained breathing apparatus.

Further information:

Dusty conditions may ignite explosively in the presence of an ignition source causing flash fire.

6. Accidental release measures

Further accidental release measures:

Avoid dispersal of dust in the air (i.e., clearing dust surfaces with compressed air). Avoid the formation and build-up of dust - danger of dust explosion. Dust in sufficient concentration can result in an explosive mixture in air. Handle to minimize dusting and eliminate open flame and other sources of ignition. Forms slippery surfaces with water.

Personal precautions, protective equipment and emergency procedures

Use personal protective clothing.

Environmental precautions

Do not discharge into drains/surface waters/groundwater.

Methods and material for containment and cleaning up

Nonsparking tools should be used.

Magnafloc® 10

Revision date: 2016/02/09 Page: 4/9
Version: 3.0 (30481447/SDS_GEN_CA/EN)

7. Handling and Storage

Precautions for safe handling

Breathing must be protected when large quantities are decanted without local exhaust ventilation. Handle in accordance with good industrial hygiene and safety practice. Forms slippery surfaces with water.

Protection against fire and explosion:

Avoid dust formation. Dust in sufficient concentration can result in an explosive mixture in air. Handle to minimize dusting and eliminate open flame and other sources of ignition. Routine housekeeping should be instituted to ensure that dusts do not accumulate on surfaces. Dry powders can build static electricity charges when subjected to the friction of transfer and mixing operations. Provide adequate precautions, such as electrical grounding and bonding, or inert atmospheres. Refer to NFPA 654, Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids (2013 Edition) for safe handling.

Conditions for safe storage, including any incompatibilities

Further information on storage conditions: Store in unopened original containers in a cool and dry place. Avoid wet, damp or humid conditions, temperature extremes and ignition sources.

Storage stability:

Avoid extreme heat.

8. Exposure Controls/Personal Protection

No occupational exposure limits known.

Advice on system design:

It is recommended that all dust control equipment such as local exhaust ventilation and material transport systems involved in handling of this product contain explosion relief vents or an explosion suppression system or an oxygen deficient environment. Ensure that dust-handling systems (such as exhaust ducts, dust collectors, vessels, and processing equipment) are designed in a manner to prevent the escape of dust into the work area (i.e., there is no leakage from the equipment). Use only appropriately classified electrical equipment and powered industrial trucks.

Personal protective equipment

Respiratory protection:

Wear a NIOSH-certified (or equivalent) organic vapour/particulate respirator.

Hand protection:

Chemical resistant protective gloves

Eye protection:

Safety glasses with side-shields.

Body protection:

light protective clothing

General safety and hygiene measures:

Handle in accordance with good industrial hygiene and safety practice. Ensure adequate ventilation. Wearing of closed work clothing is recommended. Wear protective clothing as necessary to minimize contact. Handle in accordance with good industrial hygiene and safety practice. No eating, drinking, smoking or tobacco use at the place of work.

Magnafloc® 10

Revision date: 2016/02/09 Page: 5/9 (30481447/SDS GEN CA/EN) Version: 3.0

9. Physical and Chemical Properties

Form: powder Odour: odourless

Odour threshold: No applicable information available.

Colour: off-white pH value: 6 - 8 (10 g/I)

> The product has not been tested. The statement has been derived from substances/products of a similar structure or composition.

Melting point: The substance / product

decomposes therefore not

determined.

Boiling point: not applicable

Sublimation point: No applicable information available.

Flash point: not applicable Flammability: not flammable Lower explosion limit: No data available. Upper explosion limit: No data available. Autoignition: No data available.

Vapour pressure: The product has not been tested.

Bulk density: approx. 700 kg/m3 Vapour density: No data available. Study scientifically not justified.

Partitioning coefficient n-

octanol/water (log Pow):

Self-ignition

temperature: Viscosity, dynamic:

% volatiles:

not self-igniting

25 - 49 mPa.s

(DIN 53019)

(0.5 %(m), 25 °C) not determined

Solubility in water: Forms a viscous solution.

Solubility (quantitative): No data available. Solubility (qualitative): No data available.

Evaporation rate: The product is a non-volatile solid.

Other Information: If necessary, information on other physical and chemical

parameters is indicated in this section.

10. Stability and Reactivity

Reactivity

No hazardous reactions if stored and handled as prescribed/indicated.

Corrosion to metals:

No corrosive effect on metal.

Oxidizing properties: not fire-propagating

Chemical stability

The product is stable if stored and handled as prescribed/indicated.

Possibility of hazardous reactions

Magnafloc® 10

Revision date : 2016/02/09 Page: 6/9
Version: 3.0 (30481447/SDS_GEN_CA/EN)

The product is not a dust explosion risk as supplied; however the build-up of fine dust can lead to a risk of dust explosions.

Stable under normal conditions. No hazardous reactions known.

Conditions to avoid

Avoid extreme temperatures. Avoid humidity.

Incompatible materials

strong acids, strong bases, strong oxidizing agents

Hazardous decomposition products

Decomposition products:

Hazardous decomposition products: No hazardous decomposition products if stored and handled as prescribed/indicated.

11. Toxicological information

Primary routes of exposure

Routes of entry for solids and liquids are ingestion and inhalation, but may include eye or skin contact. Routes of entry for gases include inhalation and eye contact. Skin contact may be a route of entry for liquefied gases.

Acute Toxicity/Effects

Acute toxicity

Assessment of acute toxicity: No known acute effects.

<u>Oral</u>

Type of value: LD50

Species: rat

Value: > 5,000 mg/kg (OECD Guideline 401)

Irritation / corrosion

Assessment of irritating effects: Contact with the eyes or skin may cause mechanical irritation. The product has not been tested. The statement has been derived from the properties of the individual components.

<u>Skin</u>

Species: rabbit Result: non-irritant

Method: OECD Guideline 404

Eve

Species: rabbit Result: non-irritant

Sensitization

Assessment of sensitization: Based on the ingredients, there is no suspicion of a skin-sensitizing potential.

Aspiration Hazard

No aspiration hazard expected.

Chronic Toxicity/Effects

Magnafloc® 10

Revision date: 2016/02/09 Page: 7/9
Version: 3.0 (30481447/SDS_GEN_CA/EN)

Repeated dose toxicity

Assessment of repeated dose toxicity: Based on our experience and the information available, no adverse health effects are expected if handled as recommended with suitable precautions for designated uses. The product has not been tested. The statement has been derived from the properties of the individual components.

Genetic toxicity

Assessment of mutagenicity: Based on the ingredients, there is no suspicion of a mutagenic effect.

Carcinogenicity

Assessment of carcinogenicity: The whole of the information assessable provides no indication of a carcinogenic effect.

None of the components in this product at concentrations greater than 0.1% are listed by IARC; NTP, OSHA or ACGIH as a carcinogen.

Reproductive toxicity

Assessment of reproduction toxicity: Based on the ingredients, there is no suspicion of a toxic effect on reproduction.

Teratogenicity

Assessment of teratogenicity: Based on the ingredients, there is no suspicion of a teratogenic effect.

Other Information

The product has not been tested. The statements on toxicology have been derived from products of a similar structure and composition.

Symptoms of Exposure

The most important known symptoms and effects are described in the labelling (see section 2) and/or in section 11., Further important symptoms and effects are so far not known.

12. Ecological Information

Toxicity

Toxicity to fish

LC50 (96 h) > 100 mg/l, Oncorhynchus mykiss (static) (under static conditions in the presence of 10 mg/L humic acid)

Aquatic invertebrates

LC50 (48 h) > 100 mg/l, Daphnia magna

Persistence and degradability

Assessment biodegradation and elimination (H2O)

Not readily biodegradable (by OECD criteria).

Bioaccumulative potential

Assessment bioaccumulation potential

Based on its structural properties, the polymer is not biologically available. Accumulation in organisms is not to be expected.

Mobility in soil

Magnafloc® 10

Revision date: 2016/02/09 Page: 8/9
Version: 3.0 (30481447/SDS_GEN_CA/EN)

Assessment transport between environmental compartments

Information on: Anionic polyacrylamide

Adsorption to solid soil phase is expected.

Additional information

Other ecotoxicological advice:

The product has not been tested. The statements on ecotoxicology have been derived from products of a similar structure and composition.

13. Disposal considerations

Waste disposal of substance:

Must be disposed of or incinerated in accordance with local regulations.

Container disposal:

Dispose of in a licensed facility. Recommend crushing, puncturing or other means to prevent unauthorized use of used containers.

14. Transport Information

Land transport

TDG

Not classified as a dangerous good under transport regulations

Sea transport

IMDG

Not classified as a dangerous good under transport regulations

Air transport

IATA/ICAO

Not classified as a dangerous good under transport regulations

15. Regulatory Information

VOC content:

not determined

Federal Regulations

Registration status:

Chemical DSL, CA released / listed

According to Controlled Products Regulations (CPR) (SOR/88-66)

Not WHMIS controlled.

Magnafloc® 10

Revision date : 2016/02/09 Page: 9/9
Version: 3.0 (30481447/SDS_GEN_CA/EN)

16. Other Information

SDS Prepared by:

BASF NA Product Regulations SDS Prepared on: 2016/02/09

We support worldwide Responsible Care® initiatives. We value the health and safety of our employees, customers, suppliers and neighbors, and the protection of the environment. Our commitment to Responsible Care is integral to conducting our business and operating our facilities in a safe and environmentally responsible fashion, supporting our customers and suppliers in ensuring the safe and environmentally sound handling of our products, and minimizing the impact of our operations on society and the environment during production, storage, transport, use and disposal of our products.

Magnafloc® 10 is a registered trademark of BASF Canada or BASF SE END OF DATA SHEET

MATERIAL SAFETY DATA SHEET

FLOTIGAM EDA

Page 1

Substance key: SXR094488

Version: 2-1/USA

Revision Date: 04/20/2011 Date of printing: 06/29/2011

Section 01 - Product Information

Identification of the

company:

Clariant Corporation

4000 Monroe Road Charlotte, NC, 28205

Telephone No.: +1 704 331 7000

Information of the substance/preparation:

Product Safety 1-704-331-7710

Emergency tel. number: +1 800-424-9300 CHEMTREC

Trade name:

FLOTIGAM EDA

Primary product use:

Ore processing

Chemical family:

Based on an isodecyl ether propylene amine/amino acetate.

Section 02 - Composition information on hazardous ingredients

Hazardous ingredients:

Component	CAS-no. (Trade secret no.)	Concentration
3-(Isodecyloxy)propylamine	30113-45-2	40 - 60 %
3-	28701-67-9	40 - 60 %
(Isodecyloxy)propylammonium acetate		

Section 03 - Hazards identification

Emergency overview:

Clear, colorless to pale yellow liquid; slight amine

odor.

Corrosive

Harmful if swallowed. Toxic to aquatic organisms

Expected Route of entry:

Inhalation:

Vapors and/or mists are probably corrosive to

respiratory passages, and may cause ulcerations

of the nose, throat, and larynx.

Skin contact:

Corrosive to the skin.

Eye contact:

Corrosive to the eye.

Ingestion:

This material will probably cause chemical burns of the mouth, pharynx, esophagus, and stomach in

humans following ingestion.

Skin absorption:

Known effects on other illnesses:

Pre-existing skin and eye disorders may be aggravated by exposure to this product.

Listed carcinogen:

IARC: No

MATERIAL SAFETY DATA SHEET FLOTIGAM EDA

Page 2

Substance key: SXR094488

Version: 2 - 1 / USA

Revision Date: 04/20/2011 Date of printing: 06/29/2011

NTP: No OSHA: No Other: No

HMIS:

Health: 3

Flammability: 1

Reactivity: 0

Personal protection: X

Section 04 - First aid measures

After inhalation:

Get victim to fresh air. Give artificial respiration or oxygen if breathing has stopped. Get prompt medical attention. Do not give fluids if victim is unconscious.

After contact with skin:

Immediately wash skin with soap and plenty of water for at least 15 minutes while removing contaminated clothing and shoes.

Seek medical attention if pain or irritation occurs.

After contact with eyes:

Flush thoroughly with water for 15 minutes. Get immediate medical help.

After ingestion:

Get immediate medical help.

Advice to doctor / Treatment:

None known.

Section 05 - Fire fighting measures

Flashpoint:

> 212 °F

Method: ASTM D 93 (closed cup)

Lower explosion limit:

Not applicable for Liquids with Flash Point > 70 °C.

Upper explosion limit:

Not applicable for Liquids with Flash Point > 70 °C.

Ignition temperature:

Not applicable for Liquids with Flash Point > 70 °C.

Hazardous combustion products:

In case of fires, hazardous combustion gases are formed:

Nitrous gases (NOx)

Extinguishing media:

water spray jet

foam sand

carbon dioxide dry powder

Special fire fighting procedure:

Use self-contained breathing apparatus and full protective clothing.

Use water spray to cool drums in fire area. Avoid breathing vapors and keep upwind.

Section 06 - Accidental release measures

MATERIAL SAFETY DATA SHEET FLOTIGAM EDA

Page 3

Substance key: SXR094488

Version: 2 - 1 / USA

Revision Date: 04/20/2011 Date of printing: 06/29/2011

Steps to be taken in case of spill or leak:

Contain spill. Ensure adequate ventilation and wear appropriate personal protective equipment. Collect onto inert absorbent. Place in sealable container. Do not allow to contaminate water sources or sewers.

Section 07 - Handling and storage

Advice on safe handling:

Keep away from heat, sparks and open flames. - Avoid breathing vapors or contact with skin, eyes, and clothing.- Use only with adequate ventilation and proper protective eyewear, face shield, gloves and clothing. Wash thoroughly after handling. Keep container closed.

Further info on storage conditions:

Store in original container.

Keep from freezing.

Section 08 - Exposure controls / personal protection

No level has been established by OSHA, NIOSH, ACGIH.

Respiratory protection:

If airborne concentrations pose a health hazard, become

irritating, or exceed recommended limits, use a NIOSH approved respirator in accordance with OSHA respiratory protection

requirements under 29CFR1910.134.

Hand protection:

Nitrile Gloves.

Eye protection:

Safety glasses or chemical splash goggles.

Other protective equipment:

Clothing suitable to prevent skin contact.

IDLH:

Not Determined

Section 09 - Physical and chemical properties

Form:

Liquid

Color:

colourless to pale colour

Odor:

slightly ammonia-alkali like

pH:

approx. 9 (20 °C, 10 g/l)

Method: ASTM E 70

Solubility in water:

Method: OECD Guide-line 105

emulsifiable

Density:

0.9 g/cm3 (20 °C)

Method: DIN 51757

Freezing point:

< -4 °F

Method: OECD Guide-line 102

MATERIAL SAFETY DATA SHEET FLOTIGAM EDA

Page 4

Substance key: SXR094488

Version: 2 - 1 / USA

Revision Date: 04/20/2011 Date of printing: 06/29/2011

Starts to boil:

approx. 482 °F

Method: OECD Guide-line 103

Viscosity / (dynamic):

110 mPa.s (20 °C)

Method: DIN 53015

Further information:

Ionic Characteristic: Cationic

Section 10 - Stability and reactivity

Thermal decomposition:

> 200 °C

Method: ASTMD 3417

Chemical stability:

Stable.

Hazardous Polymerization:

Will not occur.

Section 11 - Toxicological information

Product information:

Acute oral toxicity:

LD50 ca. 500 mg/kg (rat)

Method: OECD 423

Acute inhalation toxicity:

No data available. No information on acute inhalation toxicity

was found in the specialised literature.

Acute dermal toxicity:

No data available. No information on acute dermal toxicity was

found in the specialised literature.

Skin irritation:

corrosive (rabbit)

By analogy with a similar product.

Eye irritation:

corrosive

Information derived from the corrosive effect on skin

Section 12 - Ecological information

Product information:

Biodegradation:

> 95 % (28 d)

readily degradable

By analogy with a similar product.

Fish toxicity:

LC50 7.81 mg/l (96 h, Brachydanio rerio)

Method: OECD 203

Bacteria toxicity:

EC50 49.35 mg/l (3 h, activated sludge)

By analogy with a similar product.

Chemical oxygen demand

> 2,000.000 mg/l

(COD):

By analogy with a similar product.

MATERIAL SAFETY DATA SHEET FLOTIGAM EDA

Page 5

Substance key: SXR094488

Version: 2 - 1 / USA

Revision Date: 04/20/2011 Date of printing: 06/29/2011

Remarks:

Do not dispose of in the environment.

Section 13 - Disposal considerations

Waste disposal information:

Consult local, state, and federal regulations.

Recommended disposal is by incineration in approved facilities.

RCRA hazardous waste:

No -- Not as sold. RCRA number: NONE

Section 14 - Transport information

DOT Regulation:

Proper shipping name:

Amines, liquid, corrosive, n.o.s.

Hazard class:

Packing group:

UN/NA-number:

UN 2735

Primary hazard class:

11

Technical Name:

Alkyletheramine

IATA

Proper shipping name:

Amines, liquid, corrosive, n.o.s.

Class:

Packing group:

11 UN 2735

UN/ID number: Primary risk:

Remarks:

Shipment permitted

Hazard inducer(s):

Alkyletheramine

IMDG

Proper shipping name:

Amines, liquid, corrosive, n.o.s.

Class:

Packing group:

П

UN 2735

UN no .: Primary risk:

Hazard inducer(s):

Alkyletheramine Marine Pollutant

Marine pollutant:

EmS:

F-A S-B

Section 15 - Regulatory information

TSCA Status:

All components of this product are listed on the TSCA Inventory.

SARA (section 311/312):

Reactive hazard:

no

Pressure hazard:

no

Fire hazard: Immediate/acute:

yes yes

MATERIAL SAFETY DATA SHEET FLOTIGAM EDA

Page 6

Substance key: SXR094488

Version: 2 - 1 / USA

Revision Date: 04/20/2011 Date of printing: 06/29/2011

Delayed/chronic:

no

SARA 313 information:

This product does not contain any toxic chemical listed under Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986.

Clean Water Act:

Contains no known priority pollutants at concentrations greater than 0.1%.

Section 16 - Other information

Label information:

DANGER!

CORROSIVE TO SKIN AND EYES CAUSES BURNS HARMFUL IF SWALLOWED THIS MATERIAL IS TOXIC TO AQUATIC ORGANISMS.

Avoid breathing vapor or mist. Avoid contact with skin and eyes. Avoid mist formation. Keep container closed when not in use. Keep away from heat, sparks and flame. Use ventilation and/or respiratory protection to keep exposure to a minimum.

Eye contact: flush with water for at least 15 minutes while holding eyelids open. Seek immediate medical attention. Skin contact: wash thoroughly with soap and water for 15 minutes. If skin irritation occurs, seek medical attention. Wash contaminated clothing before reuse. Ingestion: seek medical attention immediately. Inhalation: remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen and seek medical attention.

This information is supplied under the OSHA Hazard Communication Standard, 29 CFR 1910.1200, and is offered in good faith based on data available to us that we believe to be true and accurate. The recommended industrial hygiene and safe handling procedures are believed to be generally applicable to the material. However, each user should review these recommendations in the specific context of the intended use and determine whether they are appropriate for that use. No warranty, express or implied, is made regarding the accuracy of this data, the hazards connected with the use of the material, or the results to be obtained from the use thereof. We assume no responsibility for damage or injury from the use of the product described herein. Data provided here are typical and not intended for use as product specifications.

Version 6.1 Revision Date 01/15/2020 Print Date 02/08/2020

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 **Product identifiers**

Product name 4-Methyl-2-pentanol

Product Number : 109916 Brand Aldrich

Index-No. : 603-008-00-8 : 108-11-2 CAS-No.

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company Sigma-Aldrich Inc.

> 3050 Spruce Street ST. LOUIS MO 63103

UNITED STATES

Telephone : +1 314 771-5765 : +1 800 325-5052 Fax

Emergency telephone number

Emergency Phone # : +1-703-527-3887

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 3), H226

Eye irritation (Category 2A), H319

Specific target organ toxicity - single exposure (Category 3), Respiratory system, H335

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word Warning

Hazard statement(s)

H226 Flammable liquid and vapour. H319 Causes serious eye irritation.

Aldrich - 109916 Page 1 of 10

H335	May cause respiratory irritation.
Precautionary statement(s)	
P210	Keep away from heat/sparks/open flames/hot surfaces. No
	smoking.
P233	Keep container tightly closed.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ ventilating/ lighting equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P261	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.
P264	Wash skin thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/ eye protection/ face protection.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated
	clothing. Rinse skin with water/shower.
P304 + P340 + P312	IF INHALED: Remove person to fresh air and keep comfortable
	for breathing. Call a POISON CENTER/doctor if you feel unwell.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes.
	Remove contact lenses, if present and easy to do. Continue
	rinsing.
P337 + P313	If eye irritation persists: Get medical advice/ attention.
P370 + P378	In case of fire: Use dry sand, dry chemical or alcohol-resistant
	foam to extinguish.
P403 + P233	Store in a well-ventilated place. Keep container tightly closed.
P403 + P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS

plant.

May form explosive peroxides.

SECTION 3: Composition/information on ingredients

3.1 Substances

Synonyms : Isobutyl methyl carbinol

Component	Classification	Concentration
4-Methylpentan-2-ol		
	Flam. Liq. 3; Eye Irrit. 2A;	<= 100 %
	STOT SE 3; H226, H319,	
	H335	

For the full text of the H-Statements mentioned in this Section, see Section 16.

Millipore

SECTION 4: First aid measures

4.1 Description of first aid measures

General advice

Move out of dangerous area. Consult a physician. Show this safety data sheet to the doctor in attendance.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed No data available

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media

Dry powder Dry sand

Unsuitable extinguishing media

Do NOT use water jet.

5.2 Special hazards arising from the substance or mixture

Carbon oxides

5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information

Use water spray to cool unopened containers.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

For personal protection see section 8.

Aldrich - 109916 Page 3 of 10

6.2 **Environmental precautions**

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13).

6.4 **Reference to other sections**

For disposal see section 13.

SECTION 7: Handling and storage

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Storage class (TRGS 510): 3: Flammable liquids

Specific end use(s) 7.3

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control parameters	Basis	
4-Methylpentan- 2-ol	108-11-2	TWA	25 ppm	USA. ACGIH Threshold Limit Values (TLV)	
	Remarks	Central Nervous System impairment Upper Respiratory Tract irritation Eye irritation Danger of cutaneous absorption			
		STEL	40 ppm	USA. ACGIH Threshold Limit Values (TLV)	
		Central Nervous System impairment Upper Respiratory Tract irritation Eye irritation Danger of cutaneous absorption			
		TWA	25 ppm 100 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants	
		Skin designation The value in mg/m3 is approximate.			

Aldrich - 109916 Page 4 of 10

TWA	25 ppm 100 mg/m3	USA. NIOSH Recommended Exposure Limits
Potential fo	r dermal absorp	tion
ST	40 ppm 165 mg/m3	USA. NIOSH Recommended Exposure Limits
Potential fo	r dermal absorp	tion
PEL	25 ppm 100 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
Skin		
STEL	40 ppm 165 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
Skin		

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Nitrile rubber

Minimum layer thickness: 0.4 mm Break through time: 480 min

Material tested: Camatril® (KCL 730 / Aldrich Z677442, Size M)

Splash contact

Material: Nitrile rubber

Minimum layer thickness: 0.2 mm Break through time: 30 min

Material tested: Dermatril® P (KCL 743 / Aldrich Z677388, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail

sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Aldrich - 109916 Page 5 of 10

Body Protection

Impervious clothing, Flame retardant antistatic protective clothing., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

a) Appearance Form: liquid

Colour: colourless

b) Odour No data available

c) Odour Threshold No data available

d) pH No data available

e) Melting point/range: -90 °C (-130 °F) - lit.

point/freezing point

) Initial boiling point 132 °C 270 °F - lit.

and boiling range

g) Flash point 41 °C (106 °F) - closed cup

h) Evaporation rate No data available

i) Flammability (solid, No data available

gas)

j) Upper/lower Upper explosion limit: 5.5 %(V) flammability or Lower explosion limit: 1 %(V) explosive limits

k) Vapour pressure 4.9 hPa at 20 °C (68 °F)

I) Vapour density 4.09

m) Relative density 0.802 g/cm3 at 25 °C (77 °F)

n) Water solubility 21.8 g/l at 20 °C (68 °F) - OECD Test Guideline 105 - soluble

o) Partition coefficient: No data available

n-octanol/water

p) Auto-ignition No data available

temperature

q) Decomposition No data available

temperature

r) Viscosity No data available

s) Explosive properties No data available

Aldrich - 109916 Page 6 of 10

t) Oxidizing properties No data available

9.2 Other safety information

Relative vapour 4.09 density

SECTION 10: Stability and reactivity

10.1 Reactivity

No data available

10.2 Chemical stability

Stable under recommended storage conditions.

Test for peroxide formation before distillation or evaporation. Test for peroxide formation or discard after 1 year.

Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions

No data available

10.4 Conditions to avoid

Heat, flames and sparks.

10.5 Incompatible materials

No data available

10.6 Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides Other decomposition products - No data available

In the event of fire: see section 5

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - Rat - 2,590 mg/kg (OECD Test Guideline 401) Inhalation: No data available LD50 Dermal - Rabbit - 2,870 mg/kg (OECD Test Guideline 402)

No data available

Skin corrosion/irritation

Skin - Rabbit

Result: No skin irritation - 4 h (OECD Test Guideline 404)

Serious eye damage/eye irritation

Eyes - Rabbit

Result: Irritating to eyes. (OECD Test Guideline 405)

Respiratory or skin sensitisation

Maximisation Test - Guinea pig

Aldrich - 109916 Page 7 of 10

Result: Does not cause skin sensitisation.

(OECD Test Guideline 406)

Germ cell mutagenicity

Ames test S. typhimurium Result: negative

Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is

identified as probable, possible or confirmed human carcinogen by IARC.

NTP: No component of this product present at levels greater than or equal to 0.1% is

identified as a known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is

on OSHA's list of regulated carcinogens.

Reproductive toxicity

No data available No data available

Specific target organ toxicity - single exposure

May cause respiratory irritation.

Specific target organ toxicity - repeated exposure

No data available

Aspiration hazard

No data available

Additional Information

RTECS: SA7350000

Central nervous system depression, depression, narcosis, lowering of blood pressure due to cardiac depression, relaxing of smooth muscle in all regions and depressed skeletal muscle without influencing nerves.

SECTION 12: Ecological information

12.1 Toxicity

Toxicity to fish semi-static test LC50 - Pimephales promelas (fathead minnow) - 359

mg/l - 96 h

(OECD Test Guideline 203)

Toxicity to daphnia

semi-static test EC50 - Daphnia magna (Water flea) - 337 mg/l - 48

and other aquatic invertebrates

(OECD Test Guideline 202)

Toxicity to algae static test EC50 - Pseudokirchneriella subcapitata - 264 mg/l - 72 h

(OECD Test Guideline 201)

Toxicity to bacteria Respiration inhibition EC50 - Sludge Treatment - > 100 mg/l - 3 h

(OECD Test Guideline 209)

12.2 Persistence and degradability

Biodegradability aerobic - Exposure time 28 d

Result: 85 % - Readily biodegradable.

Aldrich - 109916 Page 8 of 10

(OECD Test Guideline 301F)

Ratio BOD/ThBOD 85 %

12.3 Bioaccumulative potential

No data available

12.4 Mobility in soil

No data available

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

No data available

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product

Contact a licensed professional waste disposal service to dispose of this material. Offer surplus and non-recyclable solutions to a licensed disposal company. Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable.

Contaminated packaging

Dispose of as unused product.

SECTION 14: Transport information

DOT (US)

UN number: 2053 Class: 3 Packing group: III

Proper shipping name: Methyl isobutyl carbinol

Reportable Quantity (RQ): Poison Inhalation Hazard: No

IMDG

UN number: 2053 Class: 3 Packing group: III EMS-No: F-E, S-D

Proper shipping name: METHYL ISOBUTYL CARBINOL

IATA

UN number: 2053 Class: 3 Packing group: III

Proper shipping name: Methyl isobutyl carbinol

SECTION 15: Regulatory information

SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

Aldrich - 109916 Page 9 of 10

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Fire Hazard, Acute Health Hazard

Massachusetts Right To Know Components

No components are subject to the Massachusetts Right to Know Act.

Pennsylvania Right To Know Components

4-Methylpentan-2-ol

CAS-No. 108-11-2 Revision Date 1993-04-24

SECTION 16: Other information

Further information

Copyright 2020 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

The branding on the header and/or footer of this document may temporarily not visually match the product purchased as we transition our branding. However, all of the information in the document regarding the product remains unchanged and matches the product ordered. For further information please contact mlsbranding@sial.com.

Version: 6.1 Revision Date: 01/15/2020 Print Date: 02/08/2020

Aldrich - 109916 Page 10 of 10

PIONERA F-100 Powder

Last changed: 02/07/2012 Replaces date: 04/01/2012

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

TRADE NAME PIONERA F-100 Powder

APPLICATION AREA Flotation depressant with selectivity for Clay, Calcite and Barite

NATIONAL MANUFACTURER/IMPORTER

Enterprise Borregaard AS
Address P.O.Box 162
Country NORWAY
Telephone +47 69 11 80 00
Fax +47 69 11 86 40

CONTACT PERSONS

Name	E-mail	Telephone	Country	
Nina Faye Haraldstad	MSDS@borregaard.com	•	_	
·	-			
Emergency Phone	Type of assistance		Opening Hours	

Emergency Phone	Type of assistance	Opening Hours
112	Emergency	24 h

2. HAZARDS IDENTIFICATION

GENERAL

Not classified. Avoid generation and spreading of dust.

HEALTH

Avoid handling which leads to dust formation.

FIRE AND EXPLOSION

Note the risk of dust explosion.

3. COMPOSITION / INFORMATION ON INGREDIENTS

Ingredient name	Reg.No	EC No.	CAS No.	Conc. (wt%)	Classification
Chemically modified natural polymer				> 90 %	

4. FIRST AID MEASURES

INHALATION

Move the exposed person to fresh air at once.

SKIN CONTACT

Rinse the skin immediately with lots of water.

EYE CONTACT

Rinse immediately with plenty of water. Remove any contact lenses and rinse with water for at least 15 minutes (keep the eyelids open).

INGESTION

Drink plenty of water. Contact physician if symptoms appears.

5. FIRE-FIGHTING MEASURES

PIONERA F-100 Powder

Last changed: 02/07/2012 Replaces date: 04/01/2012

EXTINGUISHING MEDIA

Can be extinguished with water, powder, alcohol-resistant foam or carbon dioxide.

IMPROPER EXTINGUISHING MEDIA

Avoid water in straight hose stream; will scatter and spread fire.

FIRE AND EXPLOSION HAZARDS

High concentrations of dust may form explosive mixture with air. (t > 450'C). Fire causes formation of toxic gases.

PROTECTIVE EQUIPMENT FOR FIRE FIGHTERS

Use a respirator and other protective equipment.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS

Mechanical ventilation or local exhaust ventilation is required. Avoid generation and spreading of dust.

SAFETY ACTIONS TO PROTECT EXTERNAL ENVIRONMENT

Prevents major discharge into sewage systems, groundwater and surface water. Provide ventilation and confine spill. Do not allow runoff to sewer.

METHODS FOR CLEANING UP

Collect with vacuum cleaner or carefully sweep together and collect. Avoid generation and spreading of dust. Rinse clean with water. Collect in containers and seal securely.

7. HANDLING AND STORAGE

HANDLING PRECAUTIONS

Preparation has low toxicity, therefore risk of damage is limited in normal handling.

HANDLING ADVICE

Provide sufficient ventilation for operations causing dust formation. Mechanical ventilation or local exhaust ventilation may be required.

STORAGE

Keep container dry.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

EXPOSURE CONTROL

Provide good ventilation.

RESPIRATORY PROTECTION

Wear respirator if there is dust formation.

EYE PROTECTION

Use approved safety goggles or face shield.

HAND PROTECTION

No specific hand protection noted, but gloves may still be advisable.

PROTECTIVE CLOTHING

Wear suitable protective clothing.

PIONERA F-100 Powder

Last changed: 02/07/2012 Replaces date: 04/01/2012

OEL value

Ingredient name	CAS no.	Range	ppm	mg/m3	Year	Notification
Nuisance dust, total		8 h		10	2010	
R=Toxic for reproduction, H=Skin absorption, K=Carcinogenic, A=Sensitising, T=Upper limit, M=Mutagenic						

9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE Powder.

COLOUR Brown.
ODOUR Mild.

SOLUBILITY Water soluble.

Physical and chemical parameters

Parameter	Value/unit	Method/reference	Observation
pH in solution	~ 8.50		

10. STABILITY AND REACTIVITY

STABILITY

Stable under recommended storage and handling conditions.

CONDITIONS TO AVOID

No information available

MATERIALS TO AVOID

No information available

HAZARDOUS DECOMPOSITION PRODUCTS

No dangerous reactions known.

11. TOXICOLOGICAL INFORMATION

SKIN CONTACT

OECD 404, "Not classified as irritating to skin". Non-irritant.

EYE CONTACT

OECD-test 405: "Not classified as eye irritant". Non-irritant.

SENSITISATION

No known information.

ACUTE AND CHRONIC TOXICITY

No known information.

12. ECOLOGICAL INFORMATION

MOBILITY

Water soluble.

DEGRADABILITY

Expected to be readily biodegradable.

PIONERA F-100 Powder

Last changed: 02/07/2012 Replaces date: 04/01/2012

CONCLUSION

Not regarded as dangerous for the environment.

13. DISPOSAL CONSIDERATIONS

GENERAL REGULATIONS

Dump or destroy in accordance with official recommendations and applicable legislation.

14. TRANSPORT INFORMATION

Classified as Dangerous Goods: No

OTHER INFORMATION

Class 55

Harmonized Tariff Code for US: 3804.00.1000-0

15. REGULATORY INFORMATION

EC-Label: No

REFERENCES

GLOBAL CHEMICAL INVENTORY STATUS

Country List Status

United States Toxic Substance Control Act (TSCA) Included

Canada Domestic Substance List (DSL) Included

Europe European Inventory of Existing Chemical Substances (EINECS) Exempt - Polymer

Australia Australian Inventory of Chemical Substances (AICS) Included

Japan Existing and New Chemical List (ENCS) Included

Korea Korean Existing Chemical List (ECL) Included

Philippines Philippine Inventory of Chemicals and Chemical Substances (PICCS) Included

China Chemical Inventory INV (CN) - IECSC Included

New Zealand New Zealand Inventory of Chemicals (NZIoC) Included

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65). This material is not known to contain any

chemicals, currently listed as carcinogens or reproductive toxins under California Proposition 65 at levels which would be subject to

the proposition.

Not classified as dangerous for supply or conveyance - Marpol, Annex II, Appendix III.

Regulation (EC) 1907/2006 (REACH) (September 2008)

16. OTHER INFORMATION

VENDOR NOTES

Information is based on our present knowledge and applies product in deliverd form. The meaning is to describe our products safety demand and not its characteristics. It is the responsibility of the recipient of this safety data sheet to ensure that information given here is read and understood by all who use, handle, dispose of or in any way come in contact with the product. The information given in this SDS is based on our present knowledge and describe security for our products. It is not a sales specification. Assessed on the basis of available data

ISSUED: 04/01/2012 REVISION HISTORY

Version	Rev. date	Responsible	Changes
0.0.2	02/07/2012	Borregaard AS	Updated according to current regulations (NIHA)

PIONERA F-100 Powder

Last changed: 02/07/2012 Replaces date: 04/01/2012

Material Safety Data Sheet

DENSE SODA ASH

A. PRODUCT INFORMATION

TRADE NAME (PRODUCT IDENTIFIER): SODA ASH	CLASSIFICATION & SYMBOL: Class D2B		
CHEMICAL NAME AND/OR SYNONYM: FO	RMULA:	CAS NO:	
Sodium Carbonate Na	CO ₃	497-19-8	
PRODUCT USE:			
Soda salts; glass; soap, cleaners and water softeners; pulp and paper; ph	otographical agent.		
MANUFACTURER/IMPORTER:	SUPPLIER/DISTRIBU	TOR:	
General Chemical Performance Products, Ltd. 201 City Centre Drive Mississauga, Ontario L5B 3A3	General Chemical Performance Products, Ltd. 201 City Centre Drive Mississauga, Ontario L5B 3A3		
EMERGENCY TELEPHONE NO: 866-543-3896			

B. PREPARATION INFORMATION

PREPARED BY: General Chemical Corporation Product Safety Department 973-515-1840 PREVIOUS ISSUE DATE: 4/00 CURRENT ISSUE DATE: 6/01

C. TOXICOLOGICAL PROPERTIES

INHALATION:			
Inhalation of product may irritate nose, throat, and lung.			
INGESTION: Although low in toxicity, ingestion can be harmful. May cause nausea	a, vomiting, stomac	chache, and diarrhea.	
SKIN:			
May cause skin irritation from prolonged contact, especially in hot we	eather. Dermal (roo	lent-rabbit) 500 mg/24 Hr-mild irritation. Standard draize test.	
EYES:			
May irritate or burn eyes.			
ACUTE TOXICITY:		EXPOSURE LIMITS:	
Moderately toxic LD ₅₀ (rat): 2800 mg/kg. See section K		Ontario Ministry of Labour Time-Weighted Average Exposure Value (TWAEV) for Nuisance Particulate is 10	
See section K		mg/m ₃ .	
CHRONIC TOXICITY:			
CHRONIC TOXICITY: Excessive contact may produce "soda ulcers" on hands and perforati			
Excessive contact may produce "soda ulcers" on hands and perforati			
	d exposure.	SICAL EXPOSURE INDICES (BEI):	

D. PHYSICAL DATA

MATERIAL IS AT NORMAL	APPEARANCE AND	COLOR:	ODOR THRESHOLD:
CONDITIONS: APPEARANCE AN Odorless, white powd			NA
LIQUID SOLID GAS			
□			
BOILING POINT: °C	SPECIFIC GRAVITY (H ₂ O = 1)	: g/cc	VAPOR DENSITY: (AIR =1)
FREEZING POINT: 854°C (MELTING POINT)		3 @ 25 °C	Not available
SOLUBILITY IN WATER:	рН		VAPOR PRESSURE:
17 % solution @ 20 °C	1 % solution 38% solution;	pH = 11.8	(MM Hg @ 20°C not available (PSIG)
EVAPORATION RATE:	% VOLATILES BY V	OLUME:	MOLECULAR WEIGHT: 105.99
(Ether = 1.0) Not available	(AT 20°C) Not available		105.99
E. REACTIVITY DATA			
STABILITY:	CONDITIONS TO AVOID		
			aO). In the presence of moisture (i.e. perspiration)
UNSTABLE STABLE t	he two materials combine to	form corrosive caustic so	oda (NaOH) which may cause burns.
INCOMPATIBILITY (MATERIALS TO AV	OID):		
Contact with acids will release carbon dioxide of		red hot aluminum metal;	fluorine gas; lithium; and 2.4.6-trinitrotoluene.
HAZARDOUS DECOMPOSITION PROD	IICTS:		
Heating soda ash liberates CO ₂	5015.		
Na_2CO_3 (solid) = Na_2O (solid) + CO_2 (gas)			
HAZARDOUS POLYMERIZATION:		OTHER PRECAUT	ONS:
WILL NOT COOLD M			to water cautiously and with stirring; solutions can
WILL NOT OCCUR ⊠ MAY OCCUR □		get hot.	
INAT COCCIO		<u> </u>	
F. FIRE OR EXPLOSION HAZARD			
CONDITIONS OF FLAMMABILITY:		FLASH POINT:	iliaabla
NA		METHOD Not app	nicanie
HAZARDOUS COMBUSTION PRODUCT			
See Section E. Hazardous Decomposition Prod	ducts.		
	BY VOL. IN AIR EXPLO	SION HAZARDS:	
UPPER FLAMMABLE LIMIT:	NA		
LOWER FLAMMABLE LIMIT:	pplicable		
AUTOIGNITION TEMPERATURE:			
SENSITIVITY TO MECHANICAL IMPAC	Γ:		
Not applicable SENSITIVITY TO STATIC DISCHARGE:			
Not applicable			
FIRE EXTINGUISHING PROCEDURES:	aunding fire. For fire field	woor NICCLL and and a	and contained broathing and areas
Using extinguishing media appropriate for surro	puriaing tire. For tire tighting	wear NIOSH-approved,	seir-contained breatning apparatus.

G. HAZARDOUS INGREDIENTS (MIXTURES ONLY)

MATERIAL OR COMPONENT/C.A.S. #	CONCENTRATION	HAZARD DATA
Not applicable		

H. PREVENTIVE MEASURES

PERSONAL PROTECTIVE EQUIPMENT:

RESPIRATORY PROTECTION:

For dusty or misty conditions, wear NIOSH-approved dust or mist respirator.

EYES AND FACE:

For dusty or misty conditions, or when handling solutions where there is reasonable probability of eye contact, wear chemical safety goggles and hard hat. Under these conditions do not wear contact lenses.

HANDS, ARMS, AND BODY:

As a minimum, wear long-sleeve shirts, trousers, and gloves for routine product use. Cotton gloves permitted for dry product, impervious gloves when handling solutions.

STORAGE:

Cool, dry area away from acids. Prolonged storage may cause product to cake and become wet from atmospheric moisture.

NORMAL HANDLING:

Avoid contact with eyes or prolonged skin contact. Avoid breathing dust. Use good personal hygiene and housekeeping.

ENGINEERING CONTROLS:

Ventilation: Local Exhaust: In all areas where dusty or misty conditions prevail.

Natural Ventilation: Adequate for other areas

Eye wash facility should be provided in storage and general work area.

ENVIRONMENTAL:

DEGRADABILITY:	AQUATIC TOXICITY:
Not available.	TL _m 48 hr. mosquito-fish = 840 mg/1
	TL _m 96 hr. mosquito-fish = 1200 mg/1

SPILL OR LEAK (ALWAYS WEAR PERSONAL PROTECTIVE EQUIPMENT):

Shovel up dry chemical and place into an empty container with cover. Cautiously spray residue with plenty of water. Keep contaminated water from entering showers and water courses.

WASTE DISPOSAL:

Consistent with the requirements of local waste disposal authorities. If permitted by applicable disposal regulations, bury in a solid waste landfill or dissolve and neutralize as follows: Dissolve in water using caution as solution can get hot. Neutralize with acid and flush to sewer with plenty of water. Good ventilaton is required during neutralization due to release of CO₂ gas. Neutralized waste may have to be disposed of by an approved contractor.

CANADIAN SHIPPING INFORMATION:

TDGA CLASS:	PIN:	LABEL:
NA	NA	NA

I. FIRST AID MEASURES

INIHAL ATION				
	INIL	ΔI	ΛTI	

Promptly remove to fresh air. Restore and/or support breathing. Consult a physician for observation and treatment.

INGESTION:

If conscious give 2-3 glasses of water to drink to dilute the material. DO NOT INDUCE VOMITING. Contact a physician.

SKIN:

Remove contaminated clothing. Wash affected area of skin with soap and plenty of water. Get medical attention if irritation persists.

EYES:

Flush eyes promptly with plenty of running water, continuing at least 15 minutes. Get medical attention.

- J. Soda ash is produced in two principal grades: Light soda ash and Dense soda ash. These grades differ only in physical characteristics such as bulk density and size and shape of particles, which influence flow characteristics and angle of response. Other physical properties, as well as chemical properties and properties of solutions, are common to both grades of soda ash.
- **K.** LC50 (guinea pig): 800 mg/m³, 20-hr exposure

The study was based on the effects of sodium combustion products which included sodium hydroxide and sodium carbonate. The test aerosols, however, consisted of <4 micrometer diameter particles which are much smaller than the smallest particle in this product.

THIS MATERIAL SAFETY DATA SHEET IS OFFERED FOR YOUR INFORMATION, CONSIDERATION AND INVESTIGATION AS REQUIRED BY FEDERAL HAZARDOUS PRODUCTS ACT AND RELATED LEGISLATION. THE INFORMATION IS BELIEVED TO BE ACCURATE BUT GENERAL CHEMICAL CANADA LTD. PROVIDES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED.

Creation Date 16-June-2009 Revision Date 14-January-2019 Revision Number 6

1. Identification

Product Name Sodium hydroxide

Cat No.: AC206060000; AC206060010; AC206060025; AC206060250;

AC206060100

CAS-No 1310-73-2 Synonyms Caustic soda

Recommended Use Laboratory chemicals.

Uses advised against Food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Importer/DistributorFisher ScientificAcros Organics112 Colonnade Road,One Reagent LaneOttawa, ON K2E 7L6,Fair Lawn, NJ 07410

Canada

Tel: 1-800-234-7437

Emergency Telephone Number

For information **US** call: 001-800-ACROS-01 / **Europe** call: +32 14 57 52 11 Emergency Number **US**:001-201-796-7100 / **Europe**: +32 14 57 52 99 **CHEMTREC** Tel. No.**US**:001-800-424-9300 / **Europe**:001-703-527-3887

2. Hazard(s) identification

Manufacturer

Fisher Scientific

One Reagent Lane

Fair Lawn, NJ 07410

Tel: (201) 796-7100

Classification

WHMIS 2015 Classification Classified as hazardous under the Hazardous Products Regulations (SOR/2015-17)

Corrosive to metalsCategory 1Skin Corrosion/irritationCategory 1 ASerious Eye Damage/Eye IrritationCategory 1Specific target organ toxicity (single exposure)Category 3

Target Organs - Respiratory system.

Label Elements

Signal Word Danger

Hazard Statements

May be corrosive to metals

Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements

Prevention

Keep only in original container

Do not breathe dust/fumes/gas/mist/vapours/spray

Wash face, hands and any exposed skin thoroughly after handling

Use only outdoors or in a well-ventilated area

Wear protective gloves/protective clothing/eye protection/face protection

Response

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/ shower

IF INHALED: Remove person to fresh air and keep comfortable for breathing

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

Immediately call a POISON CENTER/doctor

Wash contaminated clothing before reuse

Absorb spillage to prevent material damage

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Store in corrosive resistant polypropylene container with a resistant inliner

Store in a dry place

Disposal

Dispose of contents/container to an approved waste disposal plant

3. Composition/Information on Ingredients

Component	CAS-No	Weight %	
Sodium hydroxide	1310-73-2	100	

4. First-aid measures

General Advice Immediate medical attention is required. Show this safety data sheet to the doctor in

attendance.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required. Keep eye wide open while rinsing.

Skin Contact Wash off immediately with soap and plenty of water while removing all contaminated

clothes and shoes. Call a physician immediately.

Inhalation Move to fresh air. If breathing is difficult, give oxygen. Do not use mouth-to-mouth method if

victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Call a

physician or Poison Control Center immediately.

Ingestion Do not induce vomiting. Immediate medical attention is required. Never give anything by

mouth to an unconscious person. Drink plenty of water.

Most important symptoms/effects Causes burns by all exposure routes. . Product is a corrosive material. Use of gastric

lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue

and danger of perforation

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO 2, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media Do not use a solid water stream as it may scatter and spread fire

Flash Point No information available Method - No information available

Autoignition Temperature

Explosion Limits

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sodium oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards	
3	0	1	N/A	

6. Accidental release measures

Personal Precautions Use personal protective equipment. Evacuate personnel to safe areas. Avoid contact with

skin, eyes and clothing.

Environmental Precautions Do not allow material to contaminate ground water system. Should not be released into the

environment. Do not flush into surface water or sanitary sewer system. See Section 12 for

additional ecological information.

Methods for Containment and Clean Avoid dust formation. Sweep up or vacuum up spillage and collect in suitable container for **Up** disposal.

7. Handling and	d storage

Handling Wear personal protective equipment. Use only under a chemical fume hood. Do not get in

eyes, on skin, or on clothing. Do not breathe dust. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	Alberta	British Columbia	Ontario TWAEV	Quebec	ACGIH TLV	OSHA PEL	NIOSH IDLH
Sodium hydroxide	Ceiling: 2 mg/m ³	Ceiling: 2 mg/m ³	CEV: 2 mg/m ³	Ceiling: 2 mg/m ³	Ceiling: 2 mg/m ³	Ceiling: 2 mg/m ³	IDLH: 10 mg/m ³
						TWA: 2 mg/m ³	Ceiling: 2 mg/m ³

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures

Use only under a chemical fume hood. Ensure that eyewash stations and safety showers are close to the workstation location. Wherever possible, engineering control measures such as the isolation or enclosure of the process, the introduction of process or equipment changes to minimise release or contact, and the use of properly designed ventilation systems, should be adopted to control hazardous materials at source

Personal protective equipment

Eye Protection Goggles

Hand Protection Wear appropriate protective gloves and clothing to prevent skin exposure.

Glove material	Breakthrough time	Glove thickness	Glove comments
Neoprene	> 480 minutes	0.45 mm	As tested under EN374-3
Butyl rubber	> 480 minutes	0.35 mm	Determination of Resistance to
-			Permeation by Chemicals

Inspect gloves before use. observe the instructions regarding permeability and breakthrough time which are provided by the supplier of the gloves. (Refer to manufacturer/supplier for information) gloves are suitable for the task: Chemical compatability, Dexterity, Operational conditions, User susceptibility, e.g. sensitisation effects, also take into consideration the specific local conditions under which the product is used, such as the danger of cuts, abrasion, gloves with care avoiding skin contamination.

Respiratory Protection

When workers are facing concentrations above the exposure limit they must use appropriate certified respirators. Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced. To protect the wearer, respiratory protective equipment must be the correct fit and be used and maintained properly **Recommended Filter type:** Particulates filter conforming to EN 143

When RPE is used a face piece Fit Test should be conducted

Environmental exposure controls

Prevent product from entering drains.

Hygiene Measures

Handle in accordance with good industrial hygiene and safety practice. Keep away from food, drink and animal feeding stuffs. Do not eat, drink or smoke when using this product. Remove and wash contaminated clothing before re-use. Wash hands before breaks and at the end of workday.

9. Physical and chemical properties

Physical StateSolidAppearanceWhiteOdorOdorless

Odor Threshold No information available pH No information available 14 (5 %)

Melting Point/Range 318 °C / 604.4 °F

Boiling Point/Range 1390 °C / 2534 °F @ 760 mmHg

Flash Point No information available

Evaporation Rate

Flammability (solid,gas)

Not applicable
Not flammable

Flammability or explosive limits
Upper

UpperNo data availableLowerNo data availableVapor Pressure1 mbar @ 700 °CVapor DensityNot applicable

Revision Date 14-January-2019

Sodium hydroxide

Specific Gravity No information available

Bulk Density2.13 g/cm3SolubilitySoluble in waterPartition coefficient; n-octanol/waterNo data available

Autoignition Temperature

Decomposition TemperatureNo information available

ViscosityNot applicableMolecular FormulaH Na OMolecular Weight40

10. Stability and reactivity

Reactive Hazard Yes

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat.

Incompatible Materials Strong oxidizing agents, Acids, Metals, Water

Hazardous Decomposition Products Sodium oxides, Hydrogen

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Sodium hydroxide	140 - 340 mg/kg (Rat)	1350 mg/kg (Rabbit)	Not listed

Toxicologically Synergistic

Products

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Causes severe burns by all exposure routes

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico	
Sodium hydroxide	1310-73-2	Not listed	Not listed	Not listed	Not listed	Not listed	

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects No information available.

Teratogenicity No information available.

STOT - single exposureSTOT - repeated exposure
Respiratory system
None known

Aspiration hazard No information available

Symptoms / effects,both acute and Product is a corrosive material. Use of gastric lavage or emesis is contraindicated.

delayed Possible perforation of stomach or esophagus should be investigated: Ingestion causes

severe swelling, severe damage to the delicate tissue and danger of perforation

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

Do not empty into drains. Large amounts will affect pH and harm aquatic organisms.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sodium hydroxide	Not listed	LC50: = 45.4 mg/L, 96h static (Oncorhynchus mykiss)	Not listed	Not listed

Persistence and Degradability Soluble in water Persistence is unlikely based on information available.

Bioaccumulation/ Accumulation No information available.

Mobility Will likely be mobile in the environment due to its water solubility.

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1823

Proper Shipping Name SODIUM HYDROXIDE, SOLID

Hazard Class 8
Packing Group ||

TDG

UN-No UN1823

Proper Shipping Name SODIUM HYDROXIDE, SOLID

Hazard Class
Packing Group

<u>IATA</u>

UN-No UN1823

Proper Shipping Name Sodium hydroxide, solid

Hazard Class 8
Packing Group ||

IMDG/IMO

UN-No UN1823

Proper Shipping Name Sodium hydroxide, solid

Hazard Class 8
Packing Group ||

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	DSL	NDSL	TSCA	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sodium hydroxide	Х	-	Х	215-185-5	-		Х	X	X	Х	X

Canada

Revision Date 14-January-2019

SDS in compliance with provisions of information as set out in Canadian Standard - Part 4, Schedule 1 and 2 of the Hazardous Products Regulations (HPR) and meets the requirements of the HPR (Paragraph 13(1)(a) of the Hazardous Products Act (HPA)).

16. Other information

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

Creation Date 16-June-2009
Revision Date 14-January-2019
Print Date 14-January-2019

Revision SummaryThis document has been updated to comply with the requirements of WHMIS 2015 to align

with the Globally Harmonised System (GHS) for the Classification and Labelling of

Chemicals.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

	North Carolina Non-Title	/ Air Permit Application for Albemarle Kings Mountain Lithium Mine Project
538		
539	APPENDIX D	NC DAQ PERMIT APPLICABILITY DETERMINATION LETTER
540		

Doc No.: KM60-EN-RP-9091 Revision: 1

ROY COOPER Governor ELIZABETH S. BISER Secretary MICHAEL ABRACZINSKAS Director

February 9, 2023

Mr. John Kuhn Environmental Manager Albemarle Kings Mountain Lithium/Spodumene Mining Facility 348 Holiday Inn Drive Kings Mountain, NC 28086

SUBJECT: Permit Applicability Determination

Applicability Determination No. 3910

Albemarle Kings Mountain Lithium/Spodumene Mining Facility

Kings Mountain, Cleveland County

Dear Mr. Kuhn:

On January 8, 2023, the Division of Air Quality (DAQ) received an applicability determination request from Albemarle, USA, Inc. (Albemarle) regarding a proposed lithium mining project. Albemarle is the parent company of the Albemarle Kings Mountain Facility (the Kings Mountain Facility), which currently holds Air Permit No. 02894R36 for a lithium compound production facility in Kings Mountain, Cleveland County, NC. Albemarle is proposing to reopen an existing lithium (spodumene) mine and to construct a new concentrator plant located within the footprint of its Albemarle Kings Mountain site in Cleveland County. Albemarle is requesting DAQ to determine whether the proposed mine/concentrator plant would be considered a separate stationary source under Prevention of Significant Deterioration (PSD) rules from the existing Kings Mountain Facility.

The proposed project would encompass the existing Kings Mountain Lithium Mine, which has been inactive since 1990. Albemarle is proposing to reopen this mine and construct a new Concentrator Plant to process the mine output to produce concentrated spodumene ore. The mining operation would separate the spodumene ore from the overburden (i.e., a rocky/soil waste material), with the spodumene ore providing feedstock for the newly constructed Concentrator Plant. The Concentrator Plant would then produce concentrated lithium ore known as "spodumene concentrate" by mechanical separation processes, including flotation.

Albemarle indicated the existing Kings Mountain Facility is incapable of processing the spodumene concentrate. The output from proposed mine and Concentrator Plant would be a mineral product. The existing facility is a chemical plant using chemical raw materials rather than mineral raw materials, and it lacks the equipment necessary to process mineral products from the proposed mine/concentrator plant.

A stationary source under PSD rules is defined as any building, structure, facility, or installation that emits or may emit a regulated New Source Review pollutant. This definition is further specified to mean "all pollutant-emitting activities that belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control) except the activities of any vessel. Pollutant-emitting activities shall be considered as part of the same industrial grouping if they belong to the same Major Group (i.e., which have the same two-digit code)" (40 CFR 51.166(b)(5) and (6)).

Mr. Kuhn February 9, 2023 Page 2

DAQ must assess three factors – 1) under common control, 2) located on contiguous or adjacent properties, and 3) within the same industrial grouping – to determine whether or not the proposed project should be considered a single stationary source with the existing Kings Mountain Facility. Each factor is discussed in more detail in the following paragraphs.

Common Control

The Kings Mountain Facility and the proposed mine/concentrator plant would be under common control as both would be owned and operated by Albemarle U.S., Inc.

Contiguous or Adjacent Properties

The Kings Mountain Facility and the proposed mine/concentrator plant would both be located within the existing footprint of the approximately 800-acre Albemarle Kings Mountain Site in Cleveland County. As such, they would be considered "contiguous or adjacent" properties.

Same Industrial Group

The Standard Industrial Classification (SIC) code for the Kings Mountain Facility is 2819 – Industrial Inorganic Chemicals, Not Elsewhere Classified. This group represents establishments primarily engaged in manufacturing industrial inorganic chemicals, not elsewhere classified. "Lithium compounds" and "lithium metals" are included in SIC code 2819.

The proposed lithium mine and concentrator plant would be classified as non-metallic mineral mining, as defined by the two-digit SIC code 14 – Mining and Quarrying of Nonmetallic Minerals, Except Fuels. This Major Group includes establishments primarily engaged in mining or quarrying, developing mines, or exploring for nonmetallic minerals, except fuels. Also included in this Major Group are certain well and brine operations, and primary preparation plants, such as those engaged in crushing, grinding, washing, or other concentration. The facility would be further classified by SIC code 1479 – Chemical and Fertilizer Mineral Mining, Not Elsewhere Classified, which includes "lithium mineral mining" and "spodumene mining."

Pollutant-emitting activities are considered to be part of the same industrial grouping for PSD purposes if they have the same first two digit SIC code. Therefore, the proposed mine and concentrator plant (classified under "14") would be in a different industrial grouping than the Kings Mountain Facility (classified under "28").

Another item to consider in determining the stationary source status of the facilities is the support relationship between the facilities. A "support facility" is considered to be part of the same industrial grouping as that of the primary facility it supports even if the support facility has a different two digit SIC code. Support facilities are typically those which convey, store, or otherwise assist in the production of the principal product. ¹ As noted above, the output of the proposed mine/concentrator plant cannot be processed in any of the existing processes at the Kings Mountain Facility, and the existing facility would not provide raw material, utilities, or assist the proposed mine/concentrator in any way. Therefore, neither facility would be considered as a support facility for the other.

[&]quot;Support Facility Determination: Oscar Mayer and Madison Gas and Electric," retrieved from https://www.epa.gov/sites/default/files/2015-07/documents/oscar.pdf

Mr. Kuhn February 9, 2023 Page 3

Although under "common control" and on "contiguous or adjacent property" as the existing Kings Mountain Facility, the proposed mine/concentrator plant would be a separate stationary source under PSD because the proposed project and the existing facility would operate under different SIC codes, and neither would serve as a support facility for the other.

If you have any questions regarding this determination, please feel free to contact Ms. Betty Gatano, P.E. at (919) 707-8736.

Sincerely,

Mark J. Cuilla, EIT, CPM, Chief, Permitting Section Division of Air Quality, NCDEQ

c: Laserfiche

541		
542	APPENDIX E	NC DAQ ZONING CONSISTENCY DETERMINATION

543

544

North Carolina Non-Title V Air Permit Application for Albemarle Kings Mountain Lithium Mine Project

Doc No.: KM60-EN-RP-9091 Revision: 1